E-Print Archive

There are 4491 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist View all abstracts by submitter

Sergio Díaz-Suárez   Submitted: 2022-07-14 02:45

It has been shown in a previous work that torsional Alfvén waves can drive turbulence in nonuniform coronal loops with a purely axial magnetic field. Here we explore the role of the magnetic twist. We model a coronal loop as a transversely nonuniform straight flux tube, anchored in the photosphere, and embedded in a uniform coronal environment. We consider that the magnetic field is twisted and control the strength of magnetic twist by a free parameter of the model. We excite the longitudinally fundamental mode of standing torsional Alfvén waves, whose temporal evolution is obtained by means of high-resolution three-dimensional ideal magnetohydrodynamic numerical simulations. We find that phase mixing of torsional Alfvén waves creates velocity shear in the direction perpendicular to the magnetic field lines. The velocity shear eventually triggers the Kelvin-Helmholtz instability (KHi). In weakly twisted magnetic tubes, the KHi is able to grow nonlinearly and, subsequently, turbulence is driven in the coronal loop in a similar manner as in the untwisted case. Provided that magnetic twist remains weak, the effect of magnetic twist is to delay the onset of the KHi and to slow down the development of turbulence. In contrast, magnetic tension can suppress the nonlinear growth of the KHi when magnetic twist is strong enough, even if the KHi has locally been excited by the phase-mixing shear. Thus, turbulence is not generated in strongly twisted loops.

Authors: S. Díaz-Suárez and R. Soler
Projects: None

Publication Status: Accepted for publication in A&A
Last Modified: 2022-07-15 09:51
Go to main E-Print page  Terrestrial volcanic eruptions and their possible links with solar activity   Bayesian approach for modeling solar active region global magnetic parameters  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 Å line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University