E-Print Archive

There are 4491 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare View all abstracts by submitter

Jing Huang   Submitted: 2022-07-17 19:49

Spikes are typical radio bursts in solar flares, which are proposed to be the signal of energy release in the solar corona. The whole group of spikes always shows different spectral patterns in the dynamic spectrum. Here, we present a special new feature at 0.62 GHz in a confined flare. Each group of spikes is composed of many quasi-periodic sub-clusters, which are superposed on the broadband quasi-periodic pulsations (QPPs). The quasi-periodic cluster of spikes (QPSs) have very intense emissions, and each cluster includes tens of individual spikes. When the intensity of background pulsation is increased, the intensity, duration and bandwidth of the spike cluster are also enlarged. There are 21 groups of QPSs throughout the confined flare. The central frequency of the whole group shifts from 1.9 to 1.2 GHz, and the duration of each cluster shows a negative exponential decay pattern. We propose that nonthermal electron beams play a crucial role in emitting both pulsations and spikes. The tearing-mode oscillations of a confined flux rope produce periodic accelerated electron beams. These electron beams travel inside the closed magnetic structure to produce frequency drifting pulsations via plasma emission and scattered narrowband spikes by electron-cyclotron maser emission (ECME). The slow rise of flux rope makes the source region move upward, and thus, QPSs shift towards low frequency. We propose that the confined flux rope may provide the essential conditions for the formation of QPSs.

Authors: Huang, Jing ; Tan, Chengming ; Chen, Xingyao ; Tan, Baolin ; Yan, Yihua ; Zhang, Yin ; Ma, Suli ; Zhou, Zhichao ; Zhang, Minghui ; Wang, Wei ; Chen, Linjie
Projects: None

Publication Status: Universe, vol. 8, issue 7, p. 348 (published)
Last Modified: 2022-07-18 09:56
Go to main E-Print page  Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere  Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University