E-Print Archive

There are 4491 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations View all abstracts by submitter

Małgorzata Pietras   Submitted: 2022-07-25 06:21

In this paper, we study stellar light curves from the TESS satellite (Transiting Exoplanet Survey Satellite) for the presence of stellar flares. The main aim is to detect stellar flares using two-minutes cadence data and to perform statistical analysis. To find and analyze stellar flares we prepared automatic software WARPFINDER. We implemented three methods described in this paper: trend, difference, and profile fitting. Automated search for flares was accompanied by visual inspection. Using our software we analyzed two-minute cadence light curves of 330,000 stars located in the first 39 sectors of TESS observations. As a result, we detected over 25,000 stars showing flare activity with the total number of more than 140,000 flares. This means that about 7.7% of all the analyzed objects are flaring stars. The estimated flare energies range between 1031 and 1036 erg. We prepared a preliminary preview of the statistical distribution of parameters such as a flare duration, amplitudes and energy, and compared it with previous results. The relationship between stellar activity and its spectral type, temperature and mass was also statistically analyzed. Based on the scaling laws, we estimated the average values of the magnetic field strength and length of the flare loops. In our work, we used both single (about 60%), and double (about 40%) flare profiles to fit the observational data. The components of the double profile are supposed to be related to the direct heating of the photosphere by non-thermal electrons and back warming processes.

Authors: Małgorzata Pietras, Robert Falewicz, Marek Siarkowski, Kamil Bicz, Paweł Preś
Projects: Other

Publication Status: Accepted by the Astrophysical Journal (ApJ)
Last Modified: 2022-07-27 10:13
Go to main E-Print page  The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona  Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations
Interface Region Imaging Spectrograph (IRIS) Observations of the Fractal Dimension in the Solar Atmosphere
Clusters of Solar Radio Spikes Modulated by Quasi-Periodic Pulsations in a Confined Flare
Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares
Terrestrial volcanic eruptions and their possible links with solar activity
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist
Bayesian approach for modeling solar active region global magnetic parameters
Where is the base of the Transition Region? Evidence from TRACE, SDO, IRIS and ALMA observations
The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter
Detection of spicules termed Rapid Blue-shifted Excursions as seen in the chromosphere via Hα and the transition region via Si iv 1394 line emission
Grid-based imaging in X-rays and gamma-rays with high spatial resolution
It Takes a Village (Invited memoir)
Maximal growth rate of the ascending phase of a sunspot cycle for predicting its amplitude
Starspots Modelling and Flare Analysis on Selected MV Stars
Doubling of minute-long Quasi-Periodic Pulsations from super-flares on a low mass star
Geometric Assumptions in Hydrodynamic Modeling of Coronal and Flaring Loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University