E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection View all abstracts by submitter

John Raymond   Submitted: 2022-08-29 09:46

The SWICS instrument aboard the ACE satellite has detected frequent intervals in the slow solar wind and interplanetary coronal mass ejections (ICMEs) in which C6+ and other fully stripped ions are strongly depleted, though the ionization states of elements such as Si and Fe indicate that those ions should be present. It has been suggested that these ``outlier" or ``dropout" events can be explained by the resonant cyclotron heating process, because these ions all have the same cyclotron frequency as He++. We investigate the region in the corona where these outlier events form. It must be above the ionization freeze-in height and the transition to collisionless plasma conditions, but low enough that the wind still feels the effects of solar gravity. We suggest that the dropout events correspond to relatively dense blobs of gas in which the heating is reduced because local variations in the Alfvén speed change the reflection of Alfvén waves and the turbulent cascade. As a result, the wave power at the cyclotron frequency of the fully stripped ions is absorbed by He++ and may not be able to heat the other fully-stripped ions enough to overcome solar gravity. If this picture is borne out, it may help to discriminate between resonant cyclotron heating and stochastic heating models of the solar wind.

Authors: Raymond, J.C., Asgari-Targhi, M., Wilson, M.L., Rivera, Y.J., Lepri, S.T., Shen, C.
Projects: None

Publication Status: ApJ accepted
Last Modified: 2022-08-31 13:07
Go to main E-Print page  MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation  Plasma heating and nanoflare caused by slow-mode wave in a coronal loop  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University