E-Print Archive

There are 4594 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Automatic detection technique for solar filament oscillations in GONG data View all abstracts by submitter

Manuel Luna   Submitted: 2022-09-13 07:53

Solar filament oscillations have been known for decades. Now thanks to the new capabilities of the new telescopes, these periodic motions are routinely observed. Oscillations in filaments show key aspects of their structure. A systematic study of filament oscillations over the solar cycle can shed light on the evolution of the prominences. This work is a proof of concept that aims to automatically detect and parameterise such oscillations using Hα data from the GONG network of telescopes. The proposed technique studies the periodic fluctuations of every pixel of the Hα data cubes. Using the FFT we compute the power spectral density (PSD). We define a criterion to consider whether it is a real oscillation or whether it is a spurious fluctuation. This consists in considering that the peak in the PSD must be greater than several times the background noise with a confidence level of 95%. The background noise is well fitted to a combination of red and white noise. We applied the method to several observations already reported in the literature to determine its reliability. We also applied the method to a test case, which is a data set in which the oscillations of the filaments were not known a priori. The method shows that there are areas in the filaments with PSD above the threshold value. The periodicities obtained are in general agreement with the values obtained by other methods. In the test case, the method detects oscillations in several filaments. We conclude that the proposed spectral technique is a powerful tool to automatically detect oscillations in prominences using Hα data.

Authors: Manuel Luna, Joan-René Merou Mestre, Frédéric Auchère
Projects: GONG

Publication Status: Accepted in A&A
Last Modified: 2022-09-14 13:14
Go to main E-Print page  Do periods of decayless kink oscillations of solar coronal loops depend on noise?  Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME
Separating the effects of earthside and far side solar events. A case study.
Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection
Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet
Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares
A Model for Confined Solar Eruptions Including External Reconnection
The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe
Comprehensive radiative MHD simulations of eruptive flares above collisional polarity inversion lines
An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations
Comparison of damping models for kink oscillations of coronal loops
On the three-dimensional relation between the coronal dimming, erupting filament and CME. Case study of the 28 October 2021 X1.0 event
Polarisation of decayless kink oscillations of solar coronal loops
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development
30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops
The Role of High-Frequency Transverse Oscillations in Coronal Heating
ARTop: an open-source tool for measuring Active Region Topology at the solar photosphere
Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE
New cases of super-flares on slowly rotating solar-type stars and large amplitude super-flares in G- and M-type main-sequence stars
Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe
Prediction of short stellar activity cycles using derived and established empirical relations between activity and rotation periods

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University