E-Print Archive

There are 4554 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Do periods of decayless kink oscillations of solar coronal loops depend on noise? View all abstracts by submitter

Valery Nakariakov   Submitted: 2022-09-13 13:03

Decayless kink oscillations of solar coronal loops are studied in terms of a low-dimensional model based on a randomly driven Rayleigh oscillator with coefficients experiencing random fluctuations. The model considers kink oscillations as natural modes of coronal loops, decaying by linear resonant absorption. The damping is counteracted by random motions of the loop footpoints and the interaction of the loop with external quasi-steady flows with random fluctuations. In other words, the model combines the self-oscillatory and randomly driven mechanisms for the decayless behaviour. The random signals are taken to be of the stationary red noise nature. In the noiseless case, the model has an asymptotically stationary oscillatory solution, i.e., a kink self-oscillation. It is established that the kink oscillation period is practically independent of noise. This finding justifies the seismological estimations of the kink and Alfvén speeds and the magnetic field in an oscillating loop by kink oscillations, based on the observed oscillation period. The oscillatory patterns are found to be almost harmonic. Noisy fluctuations of external flows modulate the amplitude of the almost monochromatic oscillatory pattern symmetrically, while random motions of the loop footpoints cause antisymmetric amplitude modulation. Such modulations are also consistent with the observed behaviour.

Authors: Nakariakov, V.M., Kolotkov, D.Y., Zhong, S.
Projects: None

Publication Status: MNRAS (accepted)
Last Modified: 2022-09-14 13:14
Go to main E-Print page  The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere  Automatic detection technique for solar filament oscillations in GONG data  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point
Characterising fast-time variations in the hard X-ray time profiles of solar flares using Solar Orbiter's STIX
The quiet sun at mm wavelengths as seen by ALMA
Explosive Events in the Quiet Sun Near and Beyond the Solar Limb Observed with the Interface Region Imaging Spectrograph (IRIS)
Multi-stage reconnection powering a solar coronal jet
A Statistical Analysis of Magnetic Field Changes in the Photosphere during Solar Flares Using High-cadence Vector Magnetograms and Their Association with Flare Ribbons
Numerical Study on Excitation of Turbulence and Oscillation in Above-the-loop-top Region of a Solar Flare
Oscillatory reconnection as a plasma diagnostic in the solar corona
The independence of oscillatory reconnection periodicity from the initial pulse
Oscillatory Reconnection of a 2D X-point in a hot coronal plasma
Formation Of The Lyman Continuum During Solar Flares
MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field
Unfolding Drift Effects for Cosmic Rays over the Period of the Sun's Magnetic Field Reversal
Problems in Observation and Identification of Torsional Waves in the Lower Solar Atmosphere
Solar Orbiter and SDO Observations, and Bifrost MHD Simulations of Small-scale Coronal Jets
Dominance of Bursty over Steady Heating of the 48 MK Coronal Plasma in a Solar Active Region: Quantification Using Maps of Minimum, Maximum, and Average Brightness
Solar flare hard X-rays from the anchor points of an eruptive filament
Plasmoids, Flows, and Jets During Magnetic Reconnection in a Failed Solar Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University