E-Print Archive

There are 4524 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Dimensionality of Solar Magnetic Reconnection View all abstracts by submitter

Jeongwoo Lee   Submitted: 2022-10-21 08:17

Solar flares are the best examples of astrophysical magnetic reconnection in which the reconnection structure can be studied in detail. The structure is manifested through flare ribbons, intense optical and EUV emissions in footpoints of field lines attached to the coronal reconnection region. In the most common type of solar flares, two parallel ribbons appear and move away from each other, which could be related to the reconnection electric field under the theory of two-dimensional (2D) X-point reconnection, opening up a wide field of solar research. Another breakthrough came upon the discovery of circular ribbons, which implies a dome-shaped spine-fan structure capable of truly three dimensional (3D) null point reconnection. The variability of circular ribbons could also shed light on the reconnection electric field in the corona, but was relatively less attended. In this paper, we review selective topics in both types of flares with emphasis on the dimensionality of magnetic reconnection. Three types of reconnection: 2D X-point, 3D torsional, and 3D spine-fan reconnection are studied and associated with translational, rotational, and vibrational degrees of freedom. It is demonstrated that the dimensionality-based analysis of the observed dynamics of circular and parallel ribbons can facilitate a better understanding of the nature of solar magnetic reconnection.

Authors: Jeongwoo Lee
Projects: BBSO/NST

Publication Status: Reviews of Modern Plasma Physics (published in 2022)
Last Modified: 2022-10-26 16:02
Go to main E-Print page  Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event  Microwave Perspective on Magnetic Breakout Eruption   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University