E-Print Archive

There are 4524 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event View all abstracts by submitter

Bei Zhu   Submitted: 2022-10-23 07:21

The solar eruption on 2017 September 10 was accompanied by a fast coronal mass ejection (∼3000 km s-1) and produced a ground-level enhancement (GLE) event at Earth. Multiple-viewpoint remote sensing observations are used to find the three-dimensional (3D) structure of the shock. We determine the shock parameters by combining the 3D shock kinematics and the solar wind properties obtained from a global magnetohydrodynamic (MHD) simulation, in order to compare them with the characteristics of the solar energetic particles (SEPs). We extract the magnetic connectivities of the observers from the MHD simulation and find that L1 was magnetically connected to the shock flank (rather than the nose). Further analysis shows that this shock flank propagates through the heliospheric current sheet (HCS). The weak magnetic field and relatively dense plasma around the HCS result in a large Mach number of the shock, which leads to efficient particle acceleration even at the shock flank. We conclude that the interaction between the shock and HCS provides a potential mechanism for production of the GLE event. The comparison between the shock properties and the characteristics of SEPs suggests an efficient particle acceleration in a wide spatial range by the shock propagating through the highly inhomogeneous coronal medium.

Authors: Bei Zhu; Ying D. Liu; Ryun-Young Kwon; Meng Jin; L. C. Lee; Xiaojun Xu
Projects: ACE,GOES Particles,Neutron Monitors,SDO-AIA,SoHO-LASCO

Publication Status: The Astrophysical Journal, 921:26 (9pp), 2021 November 1
Last Modified: 2022-10-26 16:02
Go to main E-Print page  Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations  Dimensionality of Solar Magnetic  Reconnection  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University