E-Print Archive

There are 4553 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Geomagnetic storm forecasting from solar coronal holes View all abstracts by submitter

Simona Nitti   Submitted: 2022-12-01 06:46

Coronal holes (CHs) are the source of high-speed streams (HSSs) in the solar wind, whose interaction with the slow solar wind creates corotating interaction regions (CIRs) in the heliosphere. Whenever the CIRs hit the Earth, they can cause geomagnetic storms. We develop a method to predict the strength of CIR/HSS-driven geomagnetic storms directly from solar observations using the CH areas and associated magnetic field polarity. First, we build a dataset comprising the properties of CHs on the Sun, the associated HSSs, CIRs, and orientation of the interplanetary magnetic field (IMF) at L1, and the strength of the associated geomagnetic storms by the geomagnetic indices Dst and Kp. Then, we predict the Dst and Kp indices using a Gaussian Process model, which accounts for the annual variation of the orientation of Earth's magnetic field axis. We demonstrate that the polarity of the IMF at L1 associated with CIRs is preserved in around 83% of cases when compared to the polarity of their CH sources. Testing our model over the period 2010-2020, we obtained a correlation coefficient between the predicted and observed Dst index of R = 0.63/0.73, and Kp index of R = 0.65/0.67, for HSSs having a polarity towards/away from the Sun. These findings demonstrate the possibility of predicting CIR/HSS-driven geomagnetic storms directly from solar observations and extending the forecasting lead time up to several days, which is relevant for enhancing space weather predictions.

Authors: Simona Nitti, Tatiana Podladchikova, Stefan J. Hofmeister, Astrid M. Veronig, Giuliana Verbanac, Mario Bandić
Projects: None

Publication Status: Accepted for publication in Monthly Notices of the Royal Astronomical Society
Last Modified: 2022-12-02 14:29
Go to main E-Print page  Interrogating Solar Flare Loop Models with IRIS Observations 1: Overview of the Models, and Mass flows  Coronal seismology by slow waves in non-adiabatic conditions  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point
Characterising fast-time variations in the hard X-ray time profiles of solar flares using Solar Orbiter's STIX
The quiet sun at mm wavelengths as seen by ALMA
Explosive Events in the Quiet Sun Near and Beyond the Solar Limb Observed with the Interface Region Imaging Spectrograph (IRIS)
Multi-stage reconnection powering a solar coronal jet
A Statistical Analysis of Magnetic Field Changes in the Photosphere during Solar Flares Using High-cadence Vector Magnetograms and Their Association with Flare Ribbons
Numerical Study on Excitation of Turbulence and Oscillation in Above-the-loop-top Region of a Solar Flare
Oscillatory reconnection as a plasma diagnostic in the solar corona
The independence of oscillatory reconnection periodicity from the initial pulse
Oscillatory Reconnection of a 2D X-point in a hot coronal plasma
Formation Of The Lyman Continuum During Solar Flares
MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field
Unfolding Drift Effects for Cosmic Rays over the Period of the Sun's Magnetic Field Reversal
Problems in Observation and Identification of Torsional Waves in the Lower Solar Atmosphere
Solar Orbiter and SDO Observations, and Bifrost MHD Simulations of Small-scale Coronal Jets
Dominance of Bursty over Steady Heating of the 48 MK Coronal Plasma in a Solar Active Region: Quantification Using Maps of Minimum, Maximum, and Average Brightness
Solar flare hard X-rays from the anchor points of an eruptive filament
Plasmoids, Flows, and Jets During Magnetic Reconnection in a Failed Solar Eruption
Connecting Chromospheric Condensation Signatures to Reconnection-driven Heating Rates in an Observed Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University