E-Print Archive

There are 4571 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Connecting Chromospheric Condensation Signatures to Reconnection-driven Heating Rates in an Observed Flare View all abstracts by submitter

Jiong Qiu   Submitted: 2022-12-20 12:03

Observations of solar flare reconnection at very high spatial and temporal resolution can be made indirectly at the footpoints of reconnected loops into which flare energy is deposited. The response of the lower atmosphere to this energy input includes a downward-propagating shock called chromospheric condensation, which can be observed in the UV and visible. In order to characterize reconnection using high-resolution observations of this response, one must develop a quantitative relationship between the two. Such a relation was recently developed, and here we test it on observations of chromospheric condensation in a single footpoint from a flare ribbon of the X1.0 flare on 2014 October 25 (SOL2014-10-25T16:56:36). Measurements taken of Si IV 1402.77 emission spectra using the Interface Region Imaging Spectrograph (IRIS) in a single pixel show the redshifted component undergoing characteristic condensation evolution. We apply the technique called the Ultraviolet Footpoint Calorimeter to infer energy deposition into one footpoint. This energy profile, persisting much longer than the observed condensation, is input into a one-dimensional, hydrodynamic simulation to compute the chromospheric response, which contains a very brief condensation episode. From this simulation, we synthesize Si IV spectra and compute the time-evolving Doppler velocity. The synthetic velocity evolution is found to compare reasonably well with the IRIS observation, thus corroborating our reconnection-condensation relationship. The exercise reveals that the chromospheric condensation characterizes a particular portion of the reconnection energy release rather than its entirety, and that the timescale of condensation does not necessarily reflect the timescale of energy input.

Authors: Ashfield, William H., IV; Longcope, Dana W. ; Zhu, Chunming; Qiu, Jiong
Projects: None

Publication Status: published in ApJ
Last Modified: 2022-12-20 14:42
Go to main E-Print page  Plasmoids, Flows, and Jets During Magnetic Reconnection in a Failed Solar Eruption  Correlated Spatio-temporal Evolution of Extreme-Ultraviolet Ribbons and Hard X-Rays in a Solar Flare  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University