E-Print Archive

There are 4571 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Solar flare hard X-rays from the anchor points of an eruptive filament View all abstracts by submitter

Muriel Zo Stiefel   Submitted: 2022-12-26 09:11

Context. We present an analysis of a GOES M1.8 flare with excellent observational coverage in UV, extreme-UV (EUV), and X-ray, including observations from the Interface Region Imaging Spectrograph (IRIS), from the Solar Dynamics Observatory (SDO) with the Atmospheric Imaging Assembly (AIA), from the Hinode/EUV Imaging Spectrometer (EIS), from the Hinode/X-ray Telescope (XRT), and from Solar Orbiter with the Spectrometer/Telescope for Imaging X-rays (STIX). Hard X-ray emission is often observed at the footpoints of flare loops and is occasionally observed in the corona. In this flare, four nonthermal hard X-ray sources are seen. Aims. Our aim is to understand why we can observe four individual nonthermal sources in this flare and how we can characterize the physical properties of these four sources. Methods. We used the multiwavelength approach to analyze the flare and characterize the four sources. To do this, we combined imaging at different wavelengths and spectroscopic fitting in the EUV and X-ray range. Results. The flare is eruptive with an associated coronal mass ejection, and it shows the classical flare picture of a heated flare loop seen in EUV and X-rays, and two nonthermal hard X-ray footpoints at the loop ends. In addition to the main flare sources, we observed two outer sources in the UV, EUV, and nonthermal X-ray range located away from the main flare loop to the east and west. The two outer sources are clearly correlated in time, and they are only seen during the first two minutes of the impulsive phase, which lasts a total of about four minutes. Conclusions. Based on the analysis, we determine that the outer sources are the anchor points of an erupting filament. The hard X-ray emission is interpreted as flare-accelerated electrons that are injected upward into the filament and then precipitate along the filament toward the chromosphere, producing Bremsstrahlung. While sources like this have been speculated to exist, this is the first report of their detection.

Authors: Muriel Zo Stiefel, Andrea Francesco Battaglia, Krzysztof Barczynski, Hannah Collier, Anna Volpara, Paolo Massa, Conrad Schwanitz, Sofia Tynelius, Louise Harra, Sm Krucker
Projects: Hinode/EIS,Hinode/XRT,IRIS,SDO-AIA,SO/STIX

Publication Status: accepted for publication in A&A
Last Modified: 2022-12-26 23:14
Go to main E-Print page  Dominance of Bursty over Steady Heating of the 48 MK Coronal Plasma in a Solar Active Region: Quantification Using Maps of Minimum, Maximum, and Average Brightness  Plasmoids, Flows, and Jets During Magnetic Reconnection in a Failed Solar Eruption  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University