E-Print Archive

There are 4571 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Unfolding Drift Effects for Cosmic Rays over the Period of the Sun's Magnetic Field Reversal View all abstracts by submitter

OPM Aslam   Submitted: 2022-12-29 02:54

A well-established, comprehensive 3-D numerical modulation model is applied to simulate galactic protons, electrons and positrons from May 2011 to May 2015, including the solar magnetic polarity reversal of Solar Cycle 24. The objective is to evaluate how these simulations compare with corresponding AMS observations for 1.0-3.0 GV, and what underlying physics follows from this comparison in order to improve our understanding on how the major physical modulation processes change, especially particle drift, from a negative to a positive magnetic polarity cycle. Apart from their local interstellar spectra, electrons and positrons differ only in their drift patterns, but they differ with protons in other ways such as their adiabatic energy changes at lower rigidity. In order to complete the simulations for oppositely charged particles, antiproton modeling results are obtained as well. Together, the observations and the corresponding modeling indicate the difference in the drift pattern before and after the recent polarity reversal and clarify to a large extent the phenomenon of charge-sign dependence during this period. The effect of global particle drift became negligible during this period of no well-defined magnetic polarity. The resulting low values of all particles' MFPs during the polarity reversal contrast their large values during solar minimum activity, and as such expose the relative contributions and effects of the different modulation processes from solar minimum to maximum activity. We find that the drift scale starts recovering just after the polarity reversal, but the MFPs keep decreasing or remain unchanged for some period after the polarity reversal.

Authors: O.P.M. Aslam, Xi Luo, M.S. Potgieter, M.D. Ngobeni, & Xiaojian Song
Projects: None

Publication Status: Submitted, Astrophysical Journal
Last Modified: 2023-01-02 23:05
Go to main E-Print page  MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field  Problems in Observation and Identification of Torsional Waves in the Lower Solar Atmosphere   Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University