E-Print Archive

There are 4571 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Formation Of The Lyman Continuum During Solar Flares View all abstracts by submitter

Shaun McLaughlin   Submitted: 2023-01-05 04:19

The Lyman Continuum (LyC; <911.12┼) forms at the top of the chromosphere in the quiet-Sun, making LyC a powerful tool for probing the chromospheric plasma during solar flares. To understand the effects of non-thermal energy deposition in the chromosphere during flares, we analysed LyC profiles from a grid of field-aligned radiative hydrodynamic models generated using the RADYN code as part of the F-CHROMA project. The spectral response of LyC, the temporal evolution of the departure coefficient of hydrogen, b1, and the color temperature, Tc, in response to a range of non-thermal electron distribution functions, were investigated. The LyC intensity was seen to increase by 4-5.5 orders of magnitude during solar flares, responding most strongly to the non-thermal electron flux of the beam. Generally, b1 decreased from 102-103 to closer to unity during solar flares, indicating a stronger coupling to local conditions, while Tc increased from 8-9kK to 10-16kK. Tc was found to be approximately equal to the electron temperature of the plasma when b1 was at a minimum. Both optically thick and optically thin components of LyC were found in agreement with the interpretation of recent observations. The optically thick layer forms deeper in the chromosphere during a flare compared to quiescent periods, whereas the optically thin layers form at higher altitudes due to chromospheric evaporation, in low-temperature, high-density regions propagating upwards. We put these results in the context of current and future missions.

Authors: Shaun A. McLaughlin, Ryan O. Milligan, Graham S. Kerr, Aaron J. Monson, Paulo J. A. Sim§es, Mihalis Mathioudakis
Projects: None

Publication Status: Accepted for Publication in The Astrophysical Journal
Last Modified: 2023-01-05 13:47
Go to main E-Print page  Oscillatory Reconnection of a 2D X-point in a hot coronal plasma  MHD simulation of Solar Eruption from Active Region 11429 Driven by Photospheric Velocity Field  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University