E-Print Archive

There are 4571 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Oscillatory Reconnection of a 2D X-point in a hot coronal plasma View all abstracts by submitter

Stephane Regnier   Submitted: 2023-01-09 08:10

Oscillatory reconnection (a relaxation mechanism with periodic changes in connectivity) has been proposed as a potential physical mechanism underpinning several periodic phenomena in the solar atmosphere including, but not limited to, quasi-periodic pulsations (QPPs). Despite its importance, however, the mechanism has never been studied within a hot, coronal plasma. We investigate oscillatory reconnection in a one million Kelvin plasma by solving the fully-compressive, resistive MHD equations for a 2D magnetic X-point under coronal conditions using the PLUTO code. We report on the resulting oscillatory reconnection including its periodicity and decay rate. We observe a more complicated oscillating profile for the current density compared to that found for a cold plasma, due to mode-conversion at the equipartition layer. We also consider, for the first time, the effect of adding anisotropic thermal conduction to the oscillatory reconnection mechanism, and we find this simplifies the spectrum of the oscillation profile and increases the decay rate. Crucially, the addition of thermal conduction does not prevent the oscillatory reconnection mechanism from manifesting. Finally, we reveal a relationship between the equilibrium magnetic field strength, decay rate, and period of oscillatory reconnection, which opens the tantalising possibility of utilizing oscillatory reconnection as a seismological tool.

Authors: Konstantinos Karampelas, James A. McLaughlin, Gert J. J. Botha, Stéphane Régnier
Projects: None

Publication Status: Published in ApJ
Last Modified: 2023-01-11 13:25
Go to main E-Print page  The independence of oscillatory reconnection periodicity from the initial pulse  Formation Of The Lyman Continuum During Solar Flares  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University