E-Print Archive

There are 4571 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Statistical Analysis of Magnetic Field Changes in the Photosphere during Solar Flares Using High-cadence Vector Magnetograms and Their Association with Flare Ribbons View all abstracts by submitter

Rahul Yadav   Submitted: 2023-01-17 12:12

We analyze high-cadence vector magnetograms (135 s) and flare-ribbon observations of 37 flares from the Solar Dynamics Observatory to understand the spatial and temporal properties of changes in the photospheric vector magnetic field and their relationship to footpoints of reconnected fields. Confirming previous studies, we find that the largest permanent changes in the horizontal field component lie near the polarity inversion line, whereas changes in the vertical field are less pronounced and are distributed throughout the active region. We find that pixels swept up by ribbons do not always exhibit permanent changes in the field. However, when they do, ribbon emission typically occurs several minutes before the start of field changes. The changes in the properties of the field show no relation to the size of active regions, but are strongly related to the flare-ribbon properties such as ribbon magnetic flux and ribbon area. For the first time, we find that the duration of permanent changes in the field is strongly coupled with the duration of the flare, lasting on average 29% of the duration of the GOES flare. Our results suggest that changes in photospheric magnetic fields are caused by a combination of two scenarios: contraction of flare loops driven by magnetic reconnection and coronal implosion.

Authors: Rahul Yadav and Maria D. Kazachenko
Projects: None

Publication Status: accepted for publication in the ApJ
Last Modified: 2023-01-18 13:11
Go to main E-Print page  Multi-stage reconnection powering a solar coronal jet  Numerical Study on Excitation of Turbulence and Oscillation in Above-the-loop-top Region of a Solar Flare  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University