E-Print Archive

There are 4571 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect View all abstracts by submitter

Graham Kerr   Submitted: 2023-02-06 20:50

Solar flares are efficient particle accelerators, with a substantial fraction of the energy released manifesting as non-thermal particles. While the role that non-thermal electrons play in transporting flare energy is well studied, the properties and importance of non-thermal protons is rather less well understood. This is in large part due to the paucity of diagnostics, particularly at the lower-energy (deka-keV) range of non-thermal proton distributions in flares. One means to identify the presence of deka-keV protons is by an effect originally described by Orrall & Zirker (1976). In the Orrall-Zirker effect, non-thermal protons interact with ambient neutral hydrogen, and via charge exchange produce a population of energetic neutral atoms (ENAs) in the chromosphere. These ENAs subsequently produce an extremely redshifted photon in the red wings of hydrogen spectral lines. We revisit predictions of the strength of this effect using modern interaction cross-sections, and numerical models capable of self-consistently simulating the flaring non-equilibrium ionization stratification, and the non-thermal proton distribution (and, crucially, their feedback on each other). We synthesize both the thermal and non-thermal emission from Ly α and Ly-beta, the most promising lines that may exhibit a detectable signal. These new predictions are are weaker and more transient than prior estimates, but the effects should be detectable in fortuitous circumstances. We degrade the Ly-beta emission to the resolution of the Spectral Imaging of the Coronal Environment (SPICE) instrument on board Solar Orbiter, demonstrating that though likely difficult, it should be possible to detect the presence of non-thermal protons in flares observed by SPICE.

Authors: Graham S. Kerr, Joel C. Allred, Adam F. Kowalski, Ryan O. Milligan, Hugh S. Hudson, Natalia Zambrana Prado, Therese A. Kucera and Jeffrey W. Brosius
Projects: None

Publication Status: Accepted in the Astrophysical Journal (in press)
Last Modified: 2023-02-07 15:18
Go to main E-Print page  The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components  Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona
Prospective Implications of EUV Coronal Plumes for Magnetic-network Genesis of Coronal Heating, Coronal-hole Solar Wind, and Solar-wind Magnetic-field Switchbacks
Solar Energetic Particle Events with Short and Long Onset Times
The mechanism of magnetic flux rope rotation during solar eruption
Quantification of the Writhe Number Evolution of Solar Filament Axes
Starspot mapping with adaptive parallel tempering. II. Application to TESS data for M-dwarf flare stars, AU Microscopii, YZ Canis Minoris, and EV Lacertae
A Superflare on YZ Canis Minoris Observed by Seimei Telescope and TESS: Red Asymmetry of Hα Emission Associated with White-Light Emission
The frequency ratio and time delay of solar radio emissions with fundamental and harmonic components
Prospects of Detecting Non-thermal Protons in Solar Flares via Lyman Line Spectroscopy: Revisiting the Orrall-Zirker Effect
Rapid Rotation of an Erupting Prominence and the Associated Coronal Mass Ejection on 13 May 2013
Spectral and Imaging Diagnostics of Spatially-Extended Turbulent Electron Acceleration and Transport in Solar Flares
Detection of a high-velocity prominence eruption leading to a CME associated with a superflare on the RS CVn-type star V1355 Orionis
Magnetohydrodynamics Instabilities of Double Magnetic Bands in a Shallow-water Tachocline Model: I Cross-equatorial Interactions of Bands
Stability of slow magnetoacoustic and entropy waves in the solar coronal plasma with thermal misbalance
The chromosphere underneath a Coronal Bright Point

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University