E-Print Archive

There are 4559 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Evolution of Plasma Composition During a Solar Flare View all abstracts by submitter

Andy S.H. To   Submitted: 2023-04-13 04:57

We analyse the coronal elemental abundances during a small flare using Hinode/EIS observations. Compared to the pre-flare elemental abundances, we observed a strong increase in coronal abundance of Ca XIV 193.84 , an emission line with low first ionisation potential (FIP < 10 eV), as quantified by the ratio Ca/Ar during the flare. This is in contrast to the unchanged abundance ratio observed using Si X 258.38 /S X 264.23 . We propose two different mechanisms to explain the different composition results. Firstly, the small flare-induced heating could have ionised S, but not the noble gas Ar, so that the flare-driven Alfvén waves brought up Si, S and Ca in tandem via the ponderomotive force which acts on ions. Secondly, the location of the flare in strong magnetic fields between two sunspots may suggest fractionation occurred in the low chromosphere, where the background gas is neutral H. In this region, high-FIP S could behave more like a low-FIP than a high-FIP element. The physical interpretations proposed generate new insights into the evolution of plasma abundances in the solar atmosphere during flaring, and suggests that current models must be updated to reflect dynamic rather than just static scenarios.

Authors: Andy S. H. To, Alexander W. James, T. S. Bastian, Lidia van Driel-Gesztelyi, David M. Long, Deborah Baker, David H. Brooks, Samantha Lomuscio, David Stansby, Gherardo Valori
Projects: Hinode/EIS,SDO-AIA,SDO-HMI,Very Large Array (VLA)

Publication Status: ApJ (accepted)
Last Modified: 2023-04-13 14:31
Go to main E-Print page  Ultra-high-resolution Observations of Persistent Null-point Reconnection in the Solar Corona  The efficiency of electron acceleration during the impulsive phase of a solar flare  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Comparison of solar activity proxies: eigenvectors versus averaged sunspot numbers
A comparative study of resistivity models for simulations of magnetic reconnection in the solar atmosphere
Links of Terrestrial Volcanic Eruptions to Solar Activity and Solar Magnetic Field
Periodicities in Solar Activity, Solar Radiation and Their Links with Terrestrial Environment
Transverse vertical oscillations during the contraction and expansion of coronal loops
New Evidence on the Origin of Solar Wind Microstreams/Switchbacks
The Merging of a Coronal Dimming and the Southern Polar Coronal Hole
Complete replacement of magnetic flux in a flux rope during a coronal mass ejection
The SunPy Project: An Interoperable Ecosystem for Solar Data Analysis
Evidence of external reconnection between an erupting mini-filament and ambient loops observed by Solar Orbiter/EUI
Ultra-high-resolution Observations of Persistent Null-point Reconnection in the Solar Corona
The Evolution of Plasma Composition During a Solar Flare
The efficiency of electron acceleration during the impulsive phase of a solar flare
Evolution of Solar Eruptive Events: Investigating the Relationships Among Magnetic Reconnection, Flare Energy Release, and Coronal Mass Ejections
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University