E-Print Archive

There are 4559 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Merging of a Coronal Dimming and the Southern Polar Coronal Hole View all abstracts by submitter

Nawin Ngampoopun   Submitted: 2023-05-11 02:20

We report on the merging between the southern polar coronal hole and an adjacent coronal dimming induced by a coronal mass ejection on 2022 March 18, resulting in the merged region persisting for at least 72 hrs. We use remote sensing data from multiple co-observing spacecraft to understand the physical processes during this merging event. The evolution of the merger is examined using Extreme-UltraViolet (EUV) images obtained from the Atmospheric Imaging Assembly onboard the Solar Dynamic Observatory and Extreme Ultraviolet Imager onboard the Solar Orbiter spacecraft. The plasma dynamics are quantified using spectroscopic data obtained from the EUV Imaging Spectrometer onboard Hinode. The photospheric magnetograms from the Helioseismic and Magnetic Imager are used to derive magnetic field properties. To our knowledge, this work is the first spectroscopical analysis of the merging of two open-field structures. We find that the coronal hole and the coronal dimming become indistinguishable after the merging. The upflow speeds inside the coronal dimming become more similar to that of a coronal hole, with a mixture of plasma upflows and downflows observable after the merging. The brightening of bright points and the appearance of coronal jets inside the merged region further imply ongoing reconnection processes. We propose that component reconnection between the coronal hole and coronal dimming fields plays an important role during this merging event, as the footpoint switching resulting from the reconnection allows the coronal dimming to intrude onto the boundary of the southern polar coronal hole.

Authors: Nawin Ngampoopun, David M. Long, Deborah Baker, Lucie M. Green, Stephanie L. Yardley, Alexander W. James and Andy S.H. To
Projects: Hinode/EIS,Hinode/XRT,SDO-AIA,SDO-HMI,SO/EUI

Publication Status: ApJ (Accepted)
Last Modified: 2023-05-11 12:38
Go to main E-Print page  New Evidence on the Origin of Solar Wind Microstreams/Switchbacks  Complete replacement of magnetic flux in a flux rope during a coronal mass ejection  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Comparison of solar activity proxies: eigenvectors versus averaged sunspot numbers
A comparative study of resistivity models for simulations of magnetic reconnection in the solar atmosphere
Links of Terrestrial Volcanic Eruptions to Solar Activity and Solar Magnetic Field
Periodicities in Solar Activity, Solar Radiation and Their Links with Terrestrial Environment
Transverse vertical oscillations during the contraction and expansion of coronal loops
New Evidence on the Origin of Solar Wind Microstreams/Switchbacks
The Merging of a Coronal Dimming and the Southern Polar Coronal Hole
Complete replacement of magnetic flux in a flux rope during a coronal mass ejection
The SunPy Project: An Interoperable Ecosystem for Solar Data Analysis
Evidence of external reconnection between an erupting mini-filament and ambient loops observed by Solar Orbiter/EUI
Ultra-high-resolution Observations of Persistent Null-point Reconnection in the Solar Corona
The Evolution of Plasma Composition During a Solar Flare
The efficiency of electron acceleration during the impulsive phase of a solar flare
Evolution of Solar Eruptive Events: Investigating the Relationships Among Magnetic Reconnection, Flare Energy Release, and Coronal Mass Ejections
Solar Radio Spikes and Type IIIb Striae Manifestations of Sub-second Electron Acceleration Triggered by a Coronal Mass Ejection
Statistical study of Type III bursts and associated HXR emissions
On orbit performance of the solar flare trigger for the Hinode EUV Imaging Spectrometer
Plasma Composition Measurements in an Active Region from Solar Orbiter/SPICE and Hinode/EIS
Modulation of cosmic ray anti-protons in the heliosphere: simulations for a solar cycle
Temporal and spatial association between microwaves and type III bursts in the upper corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University