E-Print Archive

There are 4618 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development View all abstracts by submitter

Manuela Temmer   Submitted: 2023-08-17 01:55

The ISWAT clusters H1+H2 have a focus on interplanetary space and its characteristics, especially on the large-scale co-rotating and transient structures impacting Earth. SIRs, generated by the interaction between high-speed solar wind originating in large-scale open coronal magnetic fields and slower solar wind from closed magnetic fields, are regions of compressed plasma and magnetic field followed by high-speed streams that recur at the ca. 27 day solar rotation period. Short-term reconfigurations of the lower coronal magnetic field generate flare emissions and provide the energy to accelerate enormous amounts of magnetised plasma and particles in the form of CMEs into interplanetary space. The dynamic interplay between these phenomena changes the configuration of interplanetary space on various temporal and spatial scales which in turn influences the propagation of individual structures. While considerable efforts have been made to model the solar wind, we outline the limitations arising from the rather large uncertainties in parameters inferred from observations that make reliable predictions of the structures impacting Earth difficult. Moreover, the increased complexity of interplanetary space as solar activity rises in cycle 25 is likely to pose a challenge to these models. Combining observational and modeling expertise will extend our knowledge of the relationship between these different phenomena and the underlying physical processes, leading to improved models and scientific understanding and more-reliable space-weather forecasting. The current paper summarizes the efforts and progress achieved in recent years, identifies open questions, and gives an outlook for the next 5-10 years. It acts as basis for updating the existing COSPAR roadmap by Schrijver+ (2015), as well as providing a useful and practical guide for peer-users and the next generation of space weather scientists.

Authors: M. Temmer, C. Scolini, I. G. Richardson, S. G. Heinemann, E. Paouris, A. Vourlidas, M. M. Bisi, et al.
Projects: None

Publication Status: accepted for publication in Advances in Space Research (COSPAR Space Weather Roadmap update)
Last Modified: 2023-08-19 20:49
Go to main E-Print page  Polarisation of decayless kink oscillations of solar coronal loops  30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption
An Optically Thin View of the Flaring Chromosphere: Nonthermal widths in a chromospheric condensation during an X-class solar flare
A Database of Magnetic and Thermodynamic Properties of Confined And Eruptive Solar Flares

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University