E-Print Archive

There are 4618 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A Model for Confined Solar Eruptions Including External Reconnection View all abstracts by submitter

Xin Cheng   Submitted: 2023-09-04 23:44

The violent disruption of the coronal magnetic field is often observed to be restricted to the low corona, appearing as a confined eruption. The possible causes of the confinement remain elusive. Here, we model the eruption of a magnetic flux rope in a quadrupolar active region, with the parameters set such that magnetic X-lines exist both below and above the rope. This facilitates the onset of magnetic reconnection in either place but with partly opposing effects on the eruption. The lower reconnection initially adds poloidal flux to the rope, increasing the upward hoop force and supporting the rise of the rope. However, when the flux of the magnetic side lobes enters the lower reconnection, the flux rope is found to separate from the reconnection site and the flux accumulation ceases. At the same time, the upper reconnection begins to reduce the poloidal flux of the rope, decreasing its hoop force; eventually this cuts the rope completely. The relative weight of the two reconnection processes is varied in the model, and it is found that their combined effect and the tension force of the overlying field confine the eruption if the flux ratio of the outer to the inner polarities exceeds a threshold, which is ~1.3 for our Cartesian box and chosen parameters. We hence propose that external reconnection between an erupting flux rope and overlying flux can play a vital role in confining eruptions.

Authors: Chen, Jun; Cheng, Xin; Kliem, Bernhard; Ding, MingDe
Projects: None

Publication Status: 2023ApJ...951L..35C
Last Modified: 2023-09-06 09:12
Go to main E-Print page  Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares  The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption
An Optically Thin View of the Flaring Chromosphere: Nonthermal widths in a chromospheric condensation during an X-class solar flare
A Database of Magnetic and Thermodynamic Properties of Confined And Eruptive Solar Flares

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University