E-Print Archive

There are 4618 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Separating the effects of earthside and far side solar events. A case study. View all abstracts by submitter

Silja Pohjolainen   Submitted: 2023-09-20 13:34

On 8 November 2013 a halo-type coronal mass ejection (CME) was observed, together with flares and type II radio bursts, but the association between the flares, radio bursts, and the CME was not clear. Our aim is to identify the origin of the CME and its direction of propagation, and to exclude features that were not connected to it. On the Earth-facing side, a GOES C5.7 class flare occurred close to the estimated CME launch time, followed by an X1.1 class flare. The latter flare was associated with an EUV wave and metric type II bursts. On the far side of the Sun, a filament eruption, EUV dimmings, and ejected CME loops were observed by imaging instruments onboard the Solar TErrestrial RElations Observatory (STEREO) spacecraft that were viewing the backside of the Sun. The STEREO radio instruments observed an interplanetary (IP) type II radio burst at decameter-hectometric wavelengths, which was not observed by the radio instrument onboard the Wind spacecraft located at L1 near Earth. We show that the halo CME originated from the eruption on the far side of the Sun, and that the IP type II burst was created by a shock wave ahead of the halo CME. The radio burst remained unobserved from the earthside, even at heliocentric source heights larger than 9 solar radii. During the CME propagation, the X-class flare eruption caused a small plasmoid ejection earthward, the material of which was superposed on the earlier CME structures observed in projection. The estimated heights of the metric type II burst match well with the EUV wave launched by the X-class flare. As this radio emission did not continue to lower frequencies, we conclude that the shock wave did not propagate any further. Either the shock driver died out, as a blast wave, or the driver speed no longer exceeded the local Alfvén speed.

Authors: Silja Pohjolainen, Nasrin Talebpour Sheshvan, Christian Monstein
Projects: None

Publication Status: Advances in Space Research, in press (Open Access)
Last Modified: 2023-09-25 15:13
Go to main E-Print page  Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME  Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption
An Optically Thin View of the Flaring Chromosphere: Nonthermal widths in a chromospheric condensation during an X-class solar flare
A Database of Magnetic and Thermodynamic Properties of Confined And Eruptive Solar Flares

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University