E-Print Archive

There are 4282 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

SOHO/CDS and Ground Based Observations of a Two-Ribbon Flare:Spatially Resolved Signatures of Chromospheric Evaporation View all abstracts by submitter

Ambretta Falchi   Submitted: 2003-01-20 06:46

During a coordinated observing campaign (SOHO JOP 139), we obtained simultaneous spectroheliograms of a solar active region in several spectral lines, sampling levels from the chromosphere to the corona. Ground based spectroheliograms were acquired at the Dunn Solar Tower of NSO/Sacramento Peak in four chromospheric lines, while the Coronal Diagnostic Spectrograph (CDS) aboard SOHO was used to obtain rasters of the active region in transition region (TR) and coronal lines. Such a complete dataset allowed us to compare the development of intensity and velocity fields during a small two-ribbon flare in the whole atmosphere. In particular, we obtained for the first time quasi-simultaneous and spatially resolved observations of velocity fields during the impulsive phase of a flare, both in chromosphere and upper atmosphere. In this phase, strong downflows (up to 40 km s-1) following the shape of the developing ribbons are measured at chromospheric levels, while strong upward motions are instead measured in TR (up to -100 km s-1) and coronal lines (-160 km s-1). The spatial pattern of these velocities have a common area about 10 arcsec wide. This is the first time that opposite directed flows at different atmospheric levels are observed in the same spatial location during a flare. These signatures are highly suggestive of the chromospheric evaporation scenario predicted in theoretical models of flares.

Authors: Teriaca, L., Falchi, A., Cauzzi, G., Falciani, R., Smaldone, L.A. and Andretta, V.
Projects:

Publication Status: Accepted by ApJ
Last Modified: 2003-01-20 06:46
Go to main E-Print page  Why current-carrying magnetic flux tubes gobble up plasma and become thin as a result  A New Solar Flare Scenario: High-beta Plasma Disruption  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles
The Solar Orbiter mission - Science Overview
Time Series Analysis of Photospheric Magnetic Parameters of Flare-quiet versus Flaring Active Regions: Scaling Properties of Fluctuations
Image Quality Assessment for Full-Disk Solar Observations with Generative Adversarial Networks
Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning
Active Region Irradiance During Quiescent Periods: New Insights from Sun-as-a-star Spectra
Probing solar flare accelerated electron distributions with prospective X-ray polarimetry missions
Accelerating and Supersonic Density Fluctuations in Coronal Hole Plumes: Signature of Nascent Solar Winds
Sequential Lid Removal in a Triple-Decker Chain of CME-Producing Solar Eruptions
RESIK and RHESSI observations of the 20 September 2002 flare
Starspot mapping with adaptive parallel tempering I: Implementation of computational code
Heating and Eruption of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University