E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Exact Solutions for Reconnective Magnetic Annihilation Annihilation View all abstracts by submitter

Eric R Priest   Submitted: 2000-01-11 11:04

A family of exact solutions of the steady, resistive nonlinear magnetohydrodyna- magnetohydrodynamic equations in two dimensions (x, y) is presented for reconnective annihilation, in which the magnetic field is advected across one pair of separatrices and diffuses across the other pair. They represent a two-fold generalization of the previous Craig-Henton solution, since a dimensio- dimensionless free parameter (gamma) in the new solutions equals unity in the previous solutions and the components (vxe, vye) and (Bxe, Bye) of plasma velocity and magnetic field at a fixed external point (x, y) = (1, 0), say, may all be imposed, whereas only three of these four components are free in the previous solutions. The solutions have the exact forms eq A=A0 (x) + A1 (x), y , quad psi = psi0 (x) + psi1 (x) , y onumber eeq for the magnetic flux function (A) and stream function (psi), so that the electric current is no longer purely a function of x as it was previously. The origin (0, 0) represents both a stagnation point and a magnetic null point, where the plasma velocity ({f v = abla imes psi hat{f z}}) and magnetic field ({f B = abla} imes A hat{f z}) both vanish. A current sheet extends along the y-axis. The non-linear fourth-order equations for A1 and psi1 are solved in the limit of small dimensionless resistivity (large magnetic Reynolds number) using the method of matched asymptotic expansions. Although the solution has a weak boundary layer near x=0, we show that a composite asymptotic representation on 0 leq x leq 1 is given by the leading order outer solution, which has a simple closed-form structure. This enables the equations for A0 and psi0 to be solved explicitly from which their representation for small resistivity is obtained. The effect of the five parameters (vxe, vye, Bxe, Bye, gamma) on the solutions is determined, including their influence on the width of the diffusion region and the inclinations of the streamlines and magnetic field lines at the origin. Several possibilities for generalizing these solutions for asymmetric reconnective annihilation in two and three dimensions are also presented.

Authors: E.R. Priest, V.S. Titov, R.E. Grundy and A.W. Hood

Publication Status: Proc. Roy. Soc (in press)
Last Modified: 2000-01-11 11:04
Go to main E-Print page  3D-Stereoscopic Analysis of Solar Active Region Loops:  The  Heating of the  Solar Corona
  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University