E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Subject will be restored when possible View all abstracts by submitter

Säm Krucker   Submitted: 2007-10-31 14:09

One of the largest solar hard X-ray (HXR) flares and solar energetic particle (SEP) events recorded by the Mars Odyssey mission while orbiting Mars occurred on 2002 October 27 and is related to a very fast (∼2300 km s-1 ) coronal mass ejection (CME). 1 From the Earth, the flare site is 40.4 degree behind the solar limb and only emissions from the high corona at least 150 000 km radially above the main flare site can be seen. Nevertheless, the Earth-orbiting Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observed HXR emission up to 60 keV with a relatively flat, nonthermal spectrum (g between 3 and 3.5) that has an onset simultaneous with the main HXR emission observed above 60 keV by the Gamma-Ray Spectrometer (GRS) orbiting Mars. While GRS records several smaller enhancements after the main peak, the high coronal source observed by RHESSI shows a long exponential decay (135 s) with progressive spectral hardening. The emissions from the high corona originate from an extended source (∼150 000 km in diameter) that expands (390 km s-1) and moves upwards (750 km s-1) in the same direction as the CME. These observations reveal the existence of energetic electrons in the high corona in closed magnetic structures related to the CME that are accelerated at the same time as the main energy release in the flare. Although the number of energetic electrons in the high corona is only a small fraction of the total accelerated electrons, about 10% of all electrons in the high coronal source are nonthermal (110 keV).

Authors: Säm Krucker, S. M. White, and R. P. Lin
Projects: RHESSI

Publication Status: published
Last Modified: 2007-11-01 07:34
Go to main E-Print page  Subject will be restored when possible  Subject will be restored when possible  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University