E-Print Archive

There are 4506 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Subject will be restored when possible View all abstracts by submitter

Etienne Pariat   Submitted: 2008-01-18 06:45

Magnetic flux emergence corresponds to the mechanism leading to the establishment of magnetized structures in the solar atmosphere. The magnetic flux emergence is directly traced on the solar surface (in visible-white light) by the presence of dark, mainly round-shaped areas, called sunspots, surrounded by brighter regions called plages. Measurements of magnetic fields at the solar surface shows that sunspots tend to be grouped in pairs, one with positive and one with negative magnetic polarity. Such a group of sunspots forms what is called an active region. The occurrence of large-scale magnetic flux emergence follows the solar cycle periodicity and is governed by the solar dynamo process. The solar surface is also covered by the so-called magnetic carpet with small magnetic bipoles scattered everywhere over the solar surface. These bipoles are due to the recycling of magnetic field by convection (granules and supergranules). This process is beyond the scope of the present discussion of magnetic flux emergence. This article deals with observable properties of magnetic field emergence in emerging flux regions (EFR) in the solar atmosphere and is complementary with the article on numerical simulations of magnetic field emergence.

Authors: B. Schmieder; E. Pariat
Projects: None

Publication Status: Scholarpedia (edited)
Last Modified: 2008-01-18 09:35
Go to main E-Print page  Subject will be restored when possible  SOLIS Vector Spectromagnetograph: Status and Science  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University