E-Print Archive

There are 4036 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Subject will be restored when possible View all abstracts by submitter

Lyndsay Fletcher   Submitted: 2008-02-12 04:49

n this paper we investigate the formation of the white-light (WL) continuum during solar flares and its relationship to energy deposition by electron beams inferred from hard X-ray emission. We analyze nine flares spanning GOES classifications from C4.8 to M9.1, seven of which show clear cospatial RHESSI hard X-ray and TRACE WL footpoints. We characterize the TRACE WL/UV continuum energy under two simplifying assumptions: (1) a blackbody function, or (2) a Paschen-Balmer continuum model. These set limits on the energy in the continuum, which we compare with that provided by flare electrons under the usual collisional thick-target assumptions. We find that the power required by the white-light luminosity enhancement is comparable to the electron beam power required to produce the HXR emission only if the low-energy cutoff to the spectrum is less than 25 keV. The bulk of the energy required to power the white-light flare (WLF) therefore resides at these low energies. Since such low-energy electrons cannot penetrate deep into a collisional thick target, this implies that the continuum enhancement is due to processes occurring at moderate depths in the chromosphere.

Authors: L. Fletcher, I. G. Hannah, H. S. Hudson & T. R. Metcalf
Projects: None

Publication Status: Published
Last Modified: 2008-02-12 04:49
Go to main E-Print page  Subject will be restored when possible  Subject will be restored when possible  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University