E-Print Archive

There are 4099 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Subject will be restored when possible View all abstracts by submitter

Lyndsay Fletcher   Submitted: 2008-02-12 05:02

A test-particle approach is used to study the collisionless response of protons to cold plasma fast Alfvén waves propagating in a nonuniform magnetic field: specifically, a two-dimensional X-point field. The field perturbations associated with the waves, which are assumed to be azimuthally symmetric and invariant in the direction orthogonal to the X-point plane, are exact solutions of the linearized ideal magnetohydrodynamic (MHD) equations. The protons are initially Maxwellian, at temperatures that are consistent with the cold plasma approximation. Two kinds of wave solution are invoked: global perturbations, with inward- and outward-propagating components; and localized purely inward-propagating waves, the wave electric field E having a preferred direction. In both cases the protons are effectively heated in the direction parallel to the magnetic field, although the parallel velocity distribution is generally non-Maxwellian and some protons are accelerated to highly suprathermal energies. This heating and acceleration can be attributed to the fact that protons undergoing EXB drifts due to the presence of the wave are subject to a force in the direction parallel to B. The localized wave solution produces more effective proton heating than the global solution, and successive wave pulses have a synergistic effect. This process, which could play a role in both solar coronal heating and late-phase heating in solar flares, is effective for all ion species, but it has a negligible direct effect on electrons. However, both electrons and heavy ions would be expected to acquire a temperature comparable to that of the protons on collisional timescales.

Authors: McKay, R. J., McClements, K. G., Fletcher, L.
Projects:

Publication Status: Published in Ap.J.
Last Modified: 2008-02-12 11:14
Go to main E-Print page  Subject will be restored when possible  Subject will be restored when possible  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface
Exoplanet predictions based on harmonic orbit resonances

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University