E-Print Archive

There are 4594 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Subject will be restored when possible View all abstracts by submitter

Huadong Chen   Submitted: 2008-02-22 00:53

Aims. To know more about the physical origin of surges and jets, we investigated seven successive surge events, which occurred above the satellite sunspots of active region NOAA 10720 on 2005 January 15. Methods. Using data from the Transition Region and Coronal Explorer (TRACE), Big Bear Solar Observatory (BBSO) and Solar and Heliospheric Observatory (SOHO), we present a detailed study of the surges and their relations with the associated small arch filament, UV jets, flares and photospheric longitudinal magnetic fields. Results. The seven Hα surges we studied repeatedly occurred where the photospheric longitudinal fluxes of opposite magnetic polarities emerged, converged and were canceled by each other. Correspondingly, a small satellite spot emerged, decayed and disappeared during a period of about 2 hours in the white-light observations. In morphology, all surges displayed almost linear ejective structures. Their dynamic properties, such as the transverse velocity, projected maximum length and lifetime, varied in wide ranges. They are 30?200 km s-1, 38 000?220 000 km and from several to tens of minutes, respectively. Correspondingly, the intensities of their correlated microflares were different too. The surges of major velocities or maximum lengths seemed to be accompanied by processes of more energy release. Prior to these surge events, a small Hα arch filament connecting the opposite flux elements was found at the base region. Instead of erupting completely, it gradually disappeared during the surges. Its role in the surge activities is very like a bipolar flux, which contained the cool plasma and reconnected with the ambient magnetic fields. In 1600 Å, three surge events exhibited the composite structures of bright jets and nearby small flaring loops, which provides direct evidence of magnetic reconnection origin of the surges. A careful comparison revealed that the ends of the arch filament, the UV jets and the small flaring loops just corresponded to the interacting longitudinal fluxes in the photosphere. Conclusions. These observational results support the magnetic reconnection model of surges and jets.

Authors: H. D. Chen, Y. C. Jiang, & S. L. Ma
Projects: None

Publication Status: Published, A&A, 2008, 478, 907-913
Last Modified: 2008-09-23 21:22
Go to main E-Print page  Subject will be restored when possible  Subject will be restored when possible  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Repeated Type III Burst Groups Associated with a B-Class Flare and a Narrow-Width CME
Separating the effects of earthside and far side solar events. A case study.
Deciphering The Slow-rise Precursor of a Major Coronal Mass Ejection
Three-dimensional Turbulent Reconnection within Solar Flare Current Sheet
Sequential Remote Brightenings and Co-spatial Fast Downflows during Two Successive Flares
A Model for Confined Solar Eruptions Including External Reconnection
The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe
Comprehensive radiative MHD simulations of eruptive flares above collisional polarity inversion lines
An Anisotropic Density Turbulence Model from the Sun to 1 au Derived From Radio Observations
Comparison of damping models for kink oscillations of coronal loops
On the three-dimensional relation between the coronal dimming, erupting filament and CME. Case study of the 28 October 2021 X1.0 event
Polarisation of decayless kink oscillations of solar coronal loops
CME Propagation Through the Heliosphere: Status and Future of Observations and Model Development
30-min Decayless Kink Oscillations in a Very Long Bundle of Solar Coronal Plasma Loops
The Role of High-Frequency Transverse Oscillations in Coronal Heating
ARTop: an open-source tool for measuring Active Region Topology at the solar photosphere
Spectral Observations and Modeling of a Solar White-light Flare Observed by CHASE
New cases of super-flares on slowly rotating solar-type stars and large amplitude super-flares in G- and M-type main-sequence stars
Constraints on the variable nature of the slow solar wind with the Wide-Field Imager on board the Parker Solar Probe
Prediction of short stellar activity cycles using derived and established empirical relations between activity and rotation periods

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University