E-Print Archive

There are 3897 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic energy and helicity fluxes at the photospheric level View all abstracts by submitter

Pascal Demoulin   Submitted: 2003-04-24 09:42

The source of coronal magnetic energy and helicity lies below the surface of the sun, probably in the convective zone dynamo. Measurements of magnetic and velocity fields can capture the fluxes of both magnetic energy and helicity crossing the photosphere. We point out the ambiguities which can occur when observations are used to compute these fluxes. In particular, we show that these fluxes should be computed only from the horizontal motions deduced by tracking the photospheric cut of magnetic flux tubes. These horizontal motions include the effect of both the emergence and the shearing motions what ever the magnetic configuration complexity is. We finally analyze the observational difficulties involved in deriving such fluxes, in particular the limitations of the correlation tracking methods.

Authors: Demoulin, P., Berger, M.A.
Projects: Soho-MDI

Publication Status: Solar Physics, in press
Last Modified: 2003-04-24 09:45
Go to main E-Print page  Helicity Transport and Generation in the Solar Convection Zone  MAGNETIC HELICITY CHANGES OF SOLAR ACTIVE REGIONS  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Computation of Relative Magnetic Helicity in Spherical Coordinates
Some characteristics of the GLE on 10 September 2017
Quasi-periodic Pulsations in a Solar Microflare
Homologous large-amplitude Nonlinear fast-mode Magnetosonic Waves Driven by Recurrent Coronal Jets
EUV Waves Driven by Sudden Expansion of Transequatorial Loops Caused by Solar Coronal Jets
Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament
Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO
LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts
Critical magnetic field strengths for solar coronal plumes in quiet regions and coronal holes?
Does Nearby Open Flux Affect the Eruptivity of Solar Active Regions?
Cyclic Changes of the Sun's Seismic Radius
Onset of Photospheric Impacts and Helioseismic Waves in X9.3 Solar Flare of September 6, 2017
Solar Cycle Variations of Rotation and Asphericity in the Near-Surface Shear Layer
Solar coronal loop dynamics near the null point above active region NOAA 2666
Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations
The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave
Indirect solar wind measurements using archival cometary tail observations
Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun
Always a Farm Boy
Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University