E-Print Archive

There are 3914 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Amplitude and orientation of prominence magnetic fields from constant α magnetohydrostatic models View all abstracts by submitter

Pascal Demoulin   Submitted: 2003-04-25 08:30

We analyze outputs from three-dimensional models for three observed filaments, which belong to the quiescent, intermediate and plage class respectively. Each model was calculated from a constant α magnetohydrostatic extrapolation, assuming that the prominence material is located in magnetic dips, so that the field is nearly horizontal throughout the prominence body and feet. We calculate the spatial distribution of the magnetic field amplitude B and orientation theta with respect to the filament axis, neither of which were imposed a priori in the models. In accordance with past magnetic field measurements within prominence bodies, we also obtain nearly homogeneous magnetic fields, respectively of about B ~ 3, 14 and 40 G for the quiescent, intermediate and plage prominence, with a systematic weak vertical field gradient of dB / dz ~ 0.1-1.5 X 10-4 G.km-1. We also find that the inverse polarity configuration is dominant with theta ~ -20 to 0 degrees, which is slightly smaller than in some observations. We also report some other properties, which have either rarely or never been observed. We find at prominence tops some localized normal polarity regions with theta < +10 degrees. At prominence bottoms below 20 Mm in altitude, we find stronger field gradients dB / dz ~ 1-10 X 10-4 G.km-1 and a wider range of field directions theta ~ -90 to 0 degrees. These properties can be interpreted by the perturbation of the prominence flux tube by strong photospheric polarities located in the neighborhood of the prominence. We also report some full portions of prominences that have the normal polarity. The latter are simply due to the local curvature of the filaments with respect to their average axis, which was used to define theta. These results could either be used as predictions for further testing of this class of models with new observations, or as quantitative tools for the interpretation of observations which show complex patterns.

Authors: Aulanier, G., Demoulin, P.
Projects: None

Publication Status: 2003, A&A, 402, 769
Last Modified: 2003-04-25 08:30
Go to main E-Print page  Helicity Evolution in Emerging Active Regions  Obervations of magnetic helicity  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?
Self-Similar Approach for Rotating Magnetohydrodynamic Solar and Astrophysical Structures
Spectroscopic and imaging observations of small-scale reconnection events
A Study of Magnetic Field Characteristics of Flaring Active Region Based on Nonlinear Force-free Field Extrapolation
A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures
Non-potential magnetic helicity ratios at the onset of eruptions
Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star
Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling
A Model of Zebra Patterns in Solar Radio Emission
Three-dimensional magnetic reconnection in a collapsing coronal loop system
On the Synthesis of GOES Light Curves from Numerical Models
Efficient Calculation of Non-Local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares
2D solar wind speeds from 6 to 26 solar radii in solar cycle 24 by using Fourier filtering
Non-damping oscillations at flaring loops
An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory
Computation of Relative Magnetic Helicity in Spherical Coordinates

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University