E-Print Archive

There are 4036 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Magnetic Helicity Budget of Solar Active Regions and Coronal Mass Ejections View all abstracts by submitter

Alexander Nindos   Submitted: 2003-05-26 07:59

We compute the magnetic helicity injected by transient photospheric horizontal flows in 6 solar active regions associated with halo coronal mass ejections (CMEs) that produced major geomagnetic storms and magnetic clouds (MCs) at 1 AU. The velocities are computed using the local correlation tracking (LCT) method. Our computations cover time intervals of 110-150 hours and in 4 active regions the accumulated helicities due to transient flows are factors of 8-12 larger than the accumulated helicities due to differential rotation. As has been first pointed out by Demoulin & Berger (2003), we suggest that the helicity computed with the LCT method yields not only the helicity injected from shearing motions but also the helicity coming from flux emergence. We compare the computed helicities injected into the corona with the helicities carried away by the CMEs using the MC helicity computations as proxies to the CME helicities. If we assume that the length of the MC flux tubes is ell=2 AU then the total helicities injected into the corona are a factor of 2.9-4 lower than the total CME helicities. If we use the values of ell determined by the condition for the initiation of the kink instability in the coronal flux rope or ell=0.5 AU then the total CME helicities and the total helicities injected into the corona are broadly consistent. Our study, at least partially, clears up some of the discrepancies in the helicity budget of active regions because the discrepancies appearing in our paper are much smaller than the ones reported in previous studies. However they point out the uncertainties in the MC/CME helicity calculations and also the limitations of the LCT method which underestimates the computed helicities.

Authors: A. Nindos, J. Zhang, H. Zhang
Projects: None

Publication Status: ApJ, in press
Last Modified: 2003-05-26 07:59
Go to main E-Print page  TRACE and YOHKOH Observations of a White Light Flare  Does solar flare activity lag behind sunspot activity?  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University