E-Print Archive

There are 4499 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Doubly Helical Coronal Ejections from Dynamos and their Role in Sustaining the Solar Cycle View all abstracts by submitter

Axel Brandenburg   Submitted: 2003-07-10 20:51

Two questions about the solar magnetic field might be answered together once their connection is identified. The first is important for large scale dynamo theory: what prevents the magnetic backreaction forces from shutting down the dynamo cycle? The second question is: what determines the handedness of twist and writhe in magnetized coronal ejecta? Magnetic helicity conservation is important for answering both questions. Conservation implies that dynamo generation of large scale writhed structures is accompanied by the oppositely signed twist along these structures. The latter is associated with the backreaction force. We suggest that coronal mass ejections (CME's) simultaneously liberate small scale twist and large scale writhe of opposite sign, helping to prevent the cycle from quenching and enabling a net magnetic flux change in each hemisphere. Observations and helicity spectrum measurements from a simulation of a rising flux ribbon support this idea. We show a new pictorial of dynamo flux generation that includes the backreaction and magnetic helicity conservation by characterizing the field as a 2-D ribbon rather than a 1-D line.

Authors: Eric G. Blackman, Axel Brandenburg
Projects: None

Publication Status: Astrophys.J. 584 (2003) L99-L102
Last Modified: 2003-07-10 20:51
Go to main E-Print page  Relaxation of writhe and twist of a bi-helical magnetic field  How magnetic helicity ejection helps large scale dynamos  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?
Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations
Slow magnetoacoustic oscillations in stellar coronal loops
Kink Oscillation of a Flux Rope During a Failed Solar Eruption
A publicly available multi-observatory data set of an enhanced network patch from the Photosphere
Type IV Radio Bursts and Associated Active Regions in the Sunspot Cycle 24
Theory of Fluid Instabilities in Partially Ionized Plasmas: An Overview
Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes
The Coupling of an EUV Coronal Wave and Ion Acceleration in a Fermi-LAT Behind-the-Limb Solar Flare
Reconciling Power Law Slopes in Solar Flare and Nanoflare Size Distributions
A Model of Homologous Confined and Ejective Eruptions Involving Kink Instability and Flux Cancellation
Detection of stellar-like abundance anomalies in the slow solar wind
Magnetosheath jet occurrence rate in relation to CMEs and SIRs
Microwave Perspective on Magnetic Breakout Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University