E-Print Archive

There are 4036 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Subject will be restored when possible View all abstracts by submitter

Victor Grechnev   Submitted: 2008-03-27 19:57

Neutral Line associated Sources (NLS) are quasi-stationary microwave sources projected onto vicinities of the neutral line of the photospheric magnetic field. NLS are often precursors of powerful flares, but their nature is unclear. We endeavor to reveal the structure of an NLS and to analyze a physical connection between such a source with a site of energy release in the corona above NOAA 10488 (October/November 2003). Evolution of this AR includes emergence and collision of two bipolar magnetic structures, rise of the main magnetic separator, and the appearance of an NLS underneath. The NLS appears at a contact site of colliding sunspots, whose relative motion goes on, resulting in large shear along a tangent. Then the nascent NLS becomes the main source of microwave fluctuations in the AR. The NLS emission at 17 GHz is dominated by either footpoints, or the top of a loop-like structure, an NLS loop, which connects two colliding sunspots. During a considerable amount of time, the emission dominates over that footpoint of the NLS loop, where the magnetic field is stronger. At that time, the NLS resembles a usual sunspot-associated radio source, whose brightness center is displaced towards the periphery of a sunspot. Microwave emission of an X2.7 flare is mainly concentrated in an ascending flare loop, initially coinciding with the NLS loop. The top of this loop is located at the base of a non-uniform bar-like structure visible in soft X-rays and at 34 GHz at the flare onset. We reveal (i) upward lengthening of this bar before the flare onset, (ii) the motion of the top of an apparently ascending flare loop along the axis of this bar, and (iii) a non-thermal microwave source, whose descent along the bar was associated with the launching of a coronal ejection. We connect the bar with a probable position of a nearly vertical diffusion region, a site of maximal energy release inside an extended pre-flare current sheet. The top of the NLS loop is located at the bottom of this region. A combination of the NLS loop and diffusion region constitutes the skeleton of a quasi-stationary microwave NLS.

Authors: A.M.Uralov, V.V.Grechnev, G.V.Rudenko, I.G.Rudenko, H.Nakajima

Publication Status: Solar Physics, accepted
Last Modified: 2008-03-28 12:29
Go to main E-Print page  3D MHD Wave Behavior in Active Regions: Individual Loop Density Structure  Subject will be restored when possible  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University