E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Subject will be restored when possible View all abstracts by submitter

David Long   Submitted: 2008-04-30 03:47

The kinematics of a globally propagating disturbance (also known as an 'EIT wave') is discussed using Extreme UltraViolet Imager (EUVI) data from Solar Terrestrial Relations Observatory (STEREO ). We show for the first time that an impulsively generated propagating disturbance has similar kinematics in all four EUVI passbands (304, 171, 195, and 284 A). In the 304 Å passband the disturbance shows a velocity peak of 238±20 km s-1 within ∼28 minutes of its launch, varying in acceleration from 76 m s-2 to -102 m s-2. This passband contains a strong contribution from a Si XI line (303.32 A) with a peak formation temperature of ∼1.6 MK. The 304 Å emission may therefore be coronal rather than chromospheric in origin. Comparable velocities and accelerations are found in the coronal 195 A passband, while lower values are found in the lower cadence 284 A passband. In the higher cadence 171 Å passband the velocity varies significantly, peaking at 475±47 km s-1 within ∼20 minutes of launch, with a variation in acceleration from 816 m s-2 to -413 m s-2. The high image cadence of the 171 Å passband (2.5 minutes compared to 10 minutes for the similar temperature response 195 A passband) is found to have a major effect on the measured velocity and acceleration of the pulse, which increase by factors of ∼2 and ∼10, respectively. This implies that previously measured values (e.g., using EIT) may have been underestimated. We also note that the disturbance shows strong reflection from a coronal hole in both the 171 and 195 A passbands. The observations are consistent with an impulsively generated fast-mode magnetoacoustic wave.

Authors: Long, D. M., Gallagher, P. T., McAteer, R. T. J., Bloomfield, D. S
Projects: STEREO

Publication Status: ApJ (accepted)
Last Modified: 2008-04-30 10:01
Go to main E-Print page  Subject will be restored when possible  Subject will be restored when possible  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University