E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Subject will be restored when possible View all abstracts by submitter

Spiros Patsourakos   Submitted: 2008-05-01 10:42

We report on the first stereoscopic observations of polar coronal jets made by the EUVI/SECCHI imagers on board the twin STEREO spacecraft. The significantly separated viewpoints (sim 11circ) allowed us to infer the 3D dynamics and morphology of a well-defined EUV coronal jet for the first time. Triangulations of the jet's location in simultaneous image pairs led to the true 3D position and thereby its kinematics. Initially the jet ascends slowly at approx10-20 mathrm{{km} {s}-1} and then, after an apparent 'jump' takes place, it accelerates impulsively to velocities exceeding 300 mathrm{{km} {s}-1} with accelerations exceeding the solar gravity. Helical structure is the most important geometrical feature of the jet which shows evidence of untwisting. The jet structure appears strikingly different from each of the two STEREO viewpoints: face-on in the one viewpoint and edge-on in the other. This provides conclusive evidence that the observed helical structure is real and is not resulting from possible projection effects of single viewpoint observations. The clear demonstration of twisted structure in polar jets compares favorably with synthetic images from a recent MHD simulation of jets invoking magnetic untwisting as their driving mechanism. Therefore, the latter can be considered as a viable mechanism for the initiation of polar jets.

Authors: Patsourakos, S., Pariat, E. Vourlidas, A., Antiochos, S. K., Wuelser, J. P.
Projects: STEREO

Publication Status: ApJL in press
Last Modified: 2008-09-23 21:02
Go to main E-Print page  Subject will be restored when possible  Subject will be restored when possible  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University