E-Print Archive

There are 4036 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Spectral Evolution of Solar Flare Hard X-ray Emission Observed with BATSE View all abstracts by submitter

Elizabeth Newton   Submitted: 2000-02-22 18:00

We present a more detailed characterization of spectral evolution in solar flare hard X-ray emission than has been previously described. Our characterization is consistent with some earlier results but utilizes higher time resolution data and reveals nuances in spectral evolution that have never been reported. We employ an underutilized data set, the BATSE solar flare catalog, for our investigation and different methodology than previous studies. Our findings support the conclusion that properties of the particle acceleration mechanism in flares, such as the acceleration rate or efficiency, are indeed important to understanding spectral evolution. On the other hand, time-of-flight models, which assume accelerator properties to be negligible, cannot explain the observed detailed spectral evolution, and correlations that we would expect to exist between spectral evolution patterns and parameters derived from time-of-f- time-of-flight model inversions are not supported by the data. In this fashion, we establish an observational context in which to interpret future HESSI observations and delineate some constraints for theoretical models of particle acceleration.

Authors: Newton, Elizabeth K. & Giblin, Timothy

Publication Status: ApJ (submitted)
Last Modified: 2000-02-22 18:00
Go to main E-Print page  Anticipating HESSI's Spatially Resolved View of Spectral Evolution
  Supra-arcade Downflows in Long-Duration Solar Flare Events
  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University