E-Print Archive

There are 4100 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Subject will be restored when possible View all abstracts by submitter

George Fisher   Submitted: 2008-05-21 14:24

We present a method for simulating coronal emissions from solar active regions using observed photospheric magnetograms and an assumption about the coronal heating mechanism as input. The method invokes a ?quasi-force-free? (minimized Lorentz force) coronal magnetic solution and a steady-state energy balance model solved along fieldlines. Coronal heating is included using parameterized approximations relating the heat deposited to properties of the magnetic field. We use calculated temperatures and densities to predict emissions and compare to observations from the Yohkoh Soft X-ray satellite. We use NOAA active region 8210 to test the model?s sensitivities. We find predicted intensities and emission morphologies change little with different assumptions for the coronal magnetic field. We test methods for calculating the proportionality constant in a heating scale relationship and find filling factors of ∼ 1-5x10-2 are needed to match temperature in the cases considered. We investigate the effect of heating scale height, finding that loop-top heating improves temperature predictions but decreases success of the emission morphology prediction. Footpoint heating has the opposite effect. Overall, our model produces relatively robust results for a wide range of assumptions. Yet the results are highly sensitive to the input coronal heating parameterization, making our method a powerful approach for discriminating between heating mechanisms. Nevertheless, we find substantial discrepancies between our synthetic emissions and observed emissions. We investigate sources of discrepancy and suggest that improved magnetic field extrapolations and dynamic heating are necessary to improve simulations.

Authors: Lundquist L. L., Fisher G. H., McTiernan J. M.
Projects: None

Publication Status: ApJ Supplements (accepted)
Last Modified: 2008-09-23 21:01
Go to main E-Print page  Subject will be restored when possible  New Aspects on Particle Acceleration in Solar Flares from RHESSI Observations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University