E-Print Archive

There are 4524 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Observational evidence for return currents in solar flare loops View all abstracts by submitter

Marina Battaglia   Submitted: 2008-02-05 05:55

Context: The common flare scenario comprises an acceleration site in the corona and particle transport to the chromosphere. Using satellites available to date it has become possible to distinguish between the two processes of acceleration and transport, and study the particle propagation in flare loops in detail, as well as complete comparisons with theoretical predictions. Aims: We complete a quantitative comparison between flare hard X-ray spectra observed by RHESSI and theoretical predictions. This enables acceleration to be distinguished from transport and the nature of transport effects to be explored. Methods: Data acquired by the RHESSI satellite were analyzed using full sun spectroscopy as well as imaging spectroscopy methods. Coronal source and footpoint spectra of well observed limb events were analyzed and quantitatively compared to theoretical predictions. New concepts are introduced to existing models to resolve discrepancies between observations and predictions. Results: The standard thin-thick target solar flare model cannot explain the observations of all events. In the events presented here, propagation effects in the form of non-collisional energy loss are of importance to explain the observations. We demonstrate that those energy losses can be interpreted in terms of an electric field in the flare loop. One event seems consistent with particle propagation or acceleration in lower than average density in the coronal source. Conclusions: We find observational evidence for an electric field in flare loops caused by return currents.

Authors: Marina Battaglia, Arnold O. Benz
Projects: RHESSI

Publication Status: A&A, in press
Last Modified: 2008-06-11 00:48
Go to main E-Print page  Subject will be restored when possible  Subject will be restored when possible  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University