E-Print Archive

There are 4102 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Rotational quasi periodicities and the Sun - heliosphere connection View all abstracts by submitter

John K. Lawrence   Submitted: 2008-06-14 01:26

Mutual quasi-periodicities near the solar-rotation period appear in time series based on the Earth's magnetic field, the interplanetary magnetic field, and signed solar-magnetic fields. Dominant among these is one at 27.03 ? 0.02 days that has been highlighted by Neugebauer, et al. 2000, J. Geophys. Res., 105, 2315. Extension of their study in time and to different data reveals decadal epochs during which the ≈ 27.0 day, a ≈ 28.3 day, or other quasi-periods dominate the signal. Space-time eigenvalue analyses of time series in 30 solar latitude bands, based on synoptic maps of unsigned photospheric fields, lead to two maximally independent modes that account for almost 30% of the data variance. One mode spans 45? of latitude in the northern hemisphere and the other one in the southern. The modes rotate around the Sun rigidly, not differentially, suggesting connection with the subsurface dynamo. Spectral analyses yield familiar dominant quasi periods 27.04 ? 0.03 days in the North and at 28.24 ? 0.03 days in the South. These are replaced during cycle 23 by one at 26.45 ? 0.03 days in the North. The modes show no tendency for preferred longitudes separated by ≈ 180?.

Authors: J.K. Lawrence, A.C. Cadavid, A. Ruzmaikin
Projects: None

Publication Status: Solar Physics (accepted)
Last Modified: 2008-09-23 20:59
Go to main E-Print page  The Origin of Polar Streamers in the Solar Corona  Subject will be restored when possible  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional Density Structure of a Solar Coronal Streamer Observed by SOHO/LASCO and STEREO/COR2 in Quadrature
Modelling Mg II During Solar Flares, I: Partial Frequency Redistribution, Opacity, and Coronal Irradiation
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University