E-Print Archive

There are 4053 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Damping of Fast Magnetohydrodymanic Oscillations in Quiescent Filament Threads View all abstracts by submitter

Inigo Arregui   Submitted: 2008-06-18 02:46

High-resolution observations provide evidence about the existence of small-amplitude transverse oscillations in solar filament fine structures. These oscillations are believed to represent fast magnetohydrodynamic (MHD) waves and the disturbances are seen to be damped in short timescales of the order of 1 to 4 periods. In this Letter we propose that, due to the highly inhomogeneous nature of the filament plasma at the fine structure spatial scale, the phenomenon of resonant absorption is likely to operate in the temporal attenuation of fast MHD oscillations. By considering transverse inhomogeneity in a straight flux tube model we find that, for density inhomogeneities typical of filament threads, the decay times are of a few oscillatory periods only.

Authors: Inigo Arregui, Jaume Terradas, Ramon Oliver, Jose Luis Ballester
Projects: None

Publication Status: ApJ Letters, accepted
Last Modified: 2008-09-23 20:59
Go to main E-Print page  Particle Interactions with Single or Multiple 3D Solar
Reconnecting Current Sheets  The Origin of Polar Streamers in the Solar Corona  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Linear waves in a non-equilibrium ionisation partially ionised plasma
How Many Twists Do Solar Coronal Jets Release?
Different Signatures of Chromospheric Evaporation in Two Solar Flares Observed with IRIS
The Physical Nature of Spiral Wave Patterns in Sunspots
Predicting Solar Flares Using a Long Short-Term Memory Network
Coronal loop transverse oscillations excited by different driver frequencies
Solar Center-Limb Variation of the Strengths of Spectral Lines: Classification and Interpretation of Observed Trends
The plasmoid instability in a confined solar flare
High-frequency dynamics of active region moss as observed by IRIS
Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare
Two-step evolution of a rising flux rope resulting in a confined solar flare
Why torus-unstable solar filaments experience failed eruption?
The Magnetic Properties of Heating Events on High-Temperature Active Region Loops
Pulse-beam heating of deep atmospheric layers, their oscillations and shocks modulating the flare reconnection
A potential magnetic field calculator for solar physics applications using staggered grids
E and B polarizations from inhomogeneous and solar surface turbulence
Oscillations Accompanying a He I 10830 Å Negative Fare in a Solar Facula II. Response of the Transition Region and Corona
Flare reconnection-driven magnetic field and Lorentz force variations at the Sun's surface
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University