E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Forward Modelling of Coronal Intensity Perturbations View all abstracts by submitter

Ineke De Moortel   Submitted: 2008-06-20 07:35

In this paper, forward modelling is used to investigate the relation between given temperature and density perturbations and the resulting (synthesised) intensity perturbations, as would be observed by e.g. TRACE and EIS (onboard Hinode). Complex and highly non-linear interactions between the components which make up the intensity (density, ionisation balance and emissivity) mean that it is non-trivial to reverse this process, i.e. obtain the density and temperature perturbations associated with observed intensity oscillations. In particular, it is found that the damping rate does not often `survive' the forward modelling process, highlighting the need for a very careful interpretation of observed (intensity) damping rates. With a few examples, it is demonstrated that in some cases even the period of the oscillations can be altered and that it is possible for two different sets of input temperature and density to lead to very similar intensities (the well-known `ill-posed' inversion process).

Authors: I. De Moortel, S.J. Bradshaw
Projects: None

Publication Status: Solar Physics (accepted)
Last Modified: 2008-09-23 20:59
Go to main E-Print page  Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations  New Aspects on Particle Acceleration in Solar Flares from RHESSI Observations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University