E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Recovery of CME-Related Dimmings and the ICME's Enduring Magnetic Connection to the Sun View all abstracts by submitter

Gemma Attrill   Submitted: 2008-07-22 05:07

It is generally accepted that transient coronal holes (TCHs, dimmings) correspond to the magnetic footpoints of CMEs that remain rooted in the Sun as the CME expands out into the interplanetary space. However, the observation that the average intensity of the 12 May 1997 dimmings recover to their pre-eruption intensity in SOHO/EIT data within 48 hours, whilst suprathermal uni-directional electron heat fluxes are observed at 1 AU in the related ICME more than 70 hours after the eruption, leads us to question why and how the dimmings disappear whilst the magnetic connectivity is maintained. We also examine two other CME-related dimming events: 13 May 2005 and 6 July 2006. We study the morphology of the dimmings and how they recover. We find that, far from exhibiting a uniform intensity, dimmings observed in SOHO/EIT data have a deep central core and a more shallow extended dimming area. The dimmings recover not only by shrinking of their outer boundaries but also by internal brightenings. We quantitatively demonstrate that the model developed by Fisk and Schwadron (Astrophys. J. 560, 425, 2001) of interchange reconnections between "open" magnetic field and small coronal loops, is a strong candidate for the mechanism facilitating the recovery of the dimmings. This process disperses the concentration of "open" magnetic field (forming the dimming) out into the surrounding quiet Sun, thus recovering the intensity of the dimmings whilst still maintaining the magnetic connectivity to the Sun.

Authors: G.D.R. Attrill, L. van Driel-Gesztelyi, P. Demoulin, A.N. Zhukov, K. Steed, L.K. Harra, C.H. Mandrini, J. Linker
Projects: SoHO-EIT,SoHO-MDI

Publication Status: Solar Physics (accepted).
Last Modified: 2008-09-23 20:53
Go to main E-Print page  Time-Distance analysis of the Emerging Active Region NOAA 10790  Physics of collisionless reconnection in a stressed X-point collapse  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University