E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Subject will be restored when possible View all abstracts by submitter

Wei Liu   Submitted: 2008-07-30 09:12

Solar flares, which have significant space weather consequences, are natural particle accelerators and one of the most spectacular phenomena of solar activity. RHESSI is the most advanced solar X-ray and gamma-ray mission ever flown and has opened a new era in solar flare research following its launch in 2002. This book offers a glimpse of this active research area from a high-energy perspective and contains a comprehensive guideline for RHESSI data analysis. Its main theme is the investigation of particle acceleration and transport in solar flares. The strength of this book lies in its well-balanced account of the latest X-ray observations and theoretical models. The observational focus is on the morphology and spectra of imaged X-ray sources produced by nonthermal electrons or hot plasma. The modeling takes the novel approach of combining the Fokker-Planck treatment of the accelerated particles with the hydro?dynamic treatment of the heated atmosphere. Applications of this modeling technique reach beyond the Sun to other exotic environ?ments in the universe, such as extrasolar planetary auroras, stellar flares, and flares on accretion disks around neutron stars and black holes.

Authors: Wei Liu
Projects: RHESSI

Publication Status: Monograph published by VDM Verlag Dr. M?ller (Germany), July 2008; ISBN: 978-3-8364-7432-0, 10 chapters, 252 pages
Last Modified: 2008-09-23 20:52
Go to main E-Print page  Intensity and Magnetic Field Distribution of Sunspots  Deconstructing active region AR10961 using STEREO, Hinode, TRACE & SOHO  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University