E-Print Archive

There are 4618 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Intensity Variations in EIT Shutterless Mode: Waves or Flows? View all abstracts by submitter

Anik De Groof   Submitted: 2003-12-02 07:07

On 11 July 2001 an EIT shutterless campaign was conducted which provided 120 high-cadence (68s) 304A images of the north eastern quarter of the Sun. The most interesting feature seen in the data is an off-limb half loop structure along which systematic intensity variations are seen which appear to propagate from the top of the loop towards its footpoint. We investigate the underlying cause of these propagating disturbances, i.e. whether they are caused by waves or by plasma flows. First we identify 7 blobs with the highest intensities and follow them along the loop. By means of a location-time plot, bulk velocities can be measured at several locations along the loop. The velocity curve found this way is then compared with characteristic wave speeds and with the free-fall speed in order to deduce the nature of the intensity variations. Additional information on density and temperature is derived by measuring the relative intensity enhancements and comparing the EIT 304A sequence with Big Bear data and 171A data (TRACE/EIT). The combination of all these constraints gives us an insight on the nature and origin of these intensity variations. The idea of slow magneto-acoustic waves is rejected, and we find several arguments supporting that these intensity variations are due to flowing/falling plasma blobs.

Authors: A. De Groof, D. Berghmans, L. Van Driel-Gesztelyi and S. Poedts
Projects: Soho-EIT

Publication Status: accepted for publication in A&A
Last Modified: 2003-12-02 07:07
Go to main E-Print page  On dissipative effects in solar prominences  ERUPTION OF A MULTIPLE-TURN HELICAL MAGNETIC FLUX TUBE IN A LARGE FLARE: EVIDENCE FOR EXTERNAL AND INTERNAL RECONNECTION THAT FITS THE BREAKOUT MODEL OF SOLAR MAGNETIC ERUPTIONS  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption
An Optically Thin View of the Flaring Chromosphere: Nonthermal widths in a chromospheric condensation during an X-class solar flare
A Database of Magnetic and Thermodynamic Properties of Confined And Eruptive Solar Flares

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University