E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The Inability of Steady Flow Models to Explain the EUV Coronal Loops View all abstracts by submitter

Spiros Patsourakos   Submitted: 2003-12-03 11:43

Recent observations from TRACE and EIT show that warm (1-1.5 MK) EUV coronal loops in active regions generally have enhanced densities, enhanced pressure scale heights, and flat filter ratio (temperature) profiles in comparison with the predictions of static equilibrium theory. It has been suggested that mass flows may explain these discrepancies. We investigate this conjecture using 1D hydrodynamic simulations of steady flows in coronal loops. The flows are driven by asymmetric heating that decreases exponentially along the loop from one footpoint to the other. We find that a sufficiently large heating asymmetry can produce density enhancements consistent with a sizable fraction of the observed loops, but that the pressure scale heights are smaller than the corresponding gravitational scale heights and that the filter ratio profiles are highly structured, in stark contrast with the observations. We conclude that most warm EUV loops cannot be explained by steady flows. It is thus likely that the heating in these loops is time dependent.

Authors: S. Patsourakos, J. A. Klimchuk & P. J. MacNeice
Projects: None

Publication Status: ApJ (in press)
Last Modified: 2003-12-03 11:43
Go to main E-Print page  Statistical Properties of Flaring and Sub-Flaring Activity in the Solar Atmosphere  On dissipative effects in solar prominences  Edit Entry  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University