E-Print Archive

There are 4525 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Inability of Steady Flow Models to Explain the EUV Coronal Loops View all abstracts by submitter

Spiros Patsourakos   Submitted: 2003-12-03 11:43

Recent observations from TRACE and EIT show that warm (1-1.5 MK) EUV coronal loops in active regions generally have enhanced densities, enhanced pressure scale heights, and flat filter ratio (temperature) profiles in comparison with the predictions of static equilibrium theory. It has been suggested that mass flows may explain these discrepancies. We investigate this conjecture using 1D hydrodynamic simulations of steady flows in coronal loops. The flows are driven by asymmetric heating that decreases exponentially along the loop from one footpoint to the other. We find that a sufficiently large heating asymmetry can produce density enhancements consistent with a sizable fraction of the observed loops, but that the pressure scale heights are smaller than the corresponding gravitational scale heights and that the filter ratio profiles are highly structured, in stark contrast with the observations. We conclude that most warm EUV loops cannot be explained by steady flows. It is thus likely that the heating in these loops is time dependent.

Authors: S. Patsourakos, J. A. Klimchuk & P. J. MacNeice
Projects: None

Publication Status: ApJ (in press)
Last Modified: 2003-12-03 11:43
Go to main E-Print page  Statistical Properties of Flaring and Sub-Flaring Activity in the Solar Atmosphere  On dissipative effects in solar prominences  Edit Entry  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Geomagnetic storm forecasting from solar coronal holes
Coronal seismology by slow waves in non-adiabatic conditions
Exploring the Ideal MHD Quasi-Modes of a Plasma Interface with a Thick Nonuniform Transition
Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares
Spectroscopic and Imaging Observations of Spatially Extended Magnetic Reconnection in the Splitting of a Solar Filament Structure
The Universality of Power Law Slopes in the Solar Photosphere and Transition Region Observed with HMI and IRIS
Turbulence and Anomalous Resistivity inside Near-Earth Magnetic Clouds
On the specific energy and pressure in near-Earth magnetic clouds
Solar Energetic Particle Event Associated with the 2012 July 23 Extreme Solar Storm
Investigation of Energetic Particle Release Using Multi-point Imaging and In Situ Observations
Shock Properties and Associated Characteristics of Solar Energetic Particles in the 2017 September 10 GLE event
Dimensionality of Solar Magnetic Reconnection
Microwave Perspective on Magnetic Breakout Eruption
Effects of Coronal Density and Magnetic Field Distributions on a Global Solar EUV Wave
Multi-spacecraft Observations of the Coronal and Interplanetary Evolution of a Solar Eruption Associated with Two Active Regions
Sun-to-Earth Characteristics of the 2012 July 12 Coronal Mass Ejection and Associated Geo-effectiveness
The effect of nanoflare flows on EUV spectral lines
On some features of the solar proton event on 2021 October 28 GLE73
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University