E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic Reconnection and Mass Acceleration in Flare-Coronal Mass Ejection Events View all abstracts by submitter

Jiong Qiu   Submitted: 2004-06-04 15:46

An observational relationship has been well established among magnetic reconnection, high-energy flare emissions and the rising motion of erupting flux ropes. In this paper, we verify that the rate of magnetic reconnection in the low corona is temporally correlated with the evolution of flare nonthermal emissions in hard X-rays and microwaves, all reaching their peak values during the rising phase of the soft X-ray emission. In addition, however, our new observations reveal a temporal correlation between the magnetic reconnection rate and the directly observed acceleration of the accompanying coronal mass ejection (CME) and filament in the low corona, thus establishing a correlation with the rising flux rope. These results are obtained by examining two well-observed two-ribbon flare events, for which we have good measurements of the rise motion of filament eruption and CMEs associated with the flares. By measuring the magnetic flux swept through by flare ribbons as they separate in the lower atmosphere, we infer the magnetic reconnection rate in terms of the reconnection electric field Erec inside the reconnecting current sheet (RCS) and the rate of magnetic flux convected into the diffusion region. For the X1.6 flare event, the inferred Erec is ~5.8 V cm-1 and the peak mass acceleration is ~3 km s-2, while for the M1.0 flare event Erec is ~0.5 V cm-1 and the peak mass acceleration is 0.2-0.4 km s-2.

Authors: Qiu, Jiong; Wang, Haimin; Cheng, C. Z.; Gary, Dale E.
Projects: None

Publication Status: 2004, ApJ, 604, 900
Last Modified: 2004-06-04 15:46
Go to main E-Print page  Flare-related Magnetic Anomaly with a Sign Reversal  Inferring a photospheric velocity field from a sequence of vector magnetograms: The Minimum Energy Fit  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University