E-Print Archive

There are 4618 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Hrd X-ray and Microwave Observations of Microflares View all abstracts by submitter

Jiong Qiu   Submitted: 2004-06-04 16:05

In this paper, we study solar microflares using the coordinated hard X-ray and microwave observations obtained by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) during its open-shutter operation mode and the Owens Valley Solar Array (OVSA). The events in our study are selected in the energy range of 12-25 keV and are relatively large microflares with an average GOES soft X-ray incremental flux at the B2.0 level. A total of 760 microflares are identified from the RHESSI burst catalog. Out of the 200 microflares that fall into the OVSA observing window, about 40% are detected in microwaves. Using these hundreds of events as samples, we study the event distribution with respect to the flux, the solar activity, and active regions, in comparison with flares of larger scales. Non-thermal properties of microflares are investigated through spectral analysis of X-rays and microwaves. (1) We find that the event frequency distribution with respect to the RHESSI peak count rates at 12-25 keV can be accurately described with a power-law function down to 8 cts s-1, the power-law index being 1.75pm0.03, consistent with previous studies. (2) Similar to large flares, the occurrence rate of microflares is correlated with solar activity. The studied samples of microflares are mostly produced by active regions as suggested by the large percentage of events detected by OVSA that observes target active regions. However, all active regions do not have equal productivity, and certain active regions are a lot more productive than other regions. (3) While some large and complex active regions are predominantly productive in both very weak and strong events, we also find an active region that produces many microflares and C-class events but does not produce powerful events. %It may be that frequent occurrence of small-scale %events in some active regions helps relax the configuration and %prevent build-up to large bursts. (4) Analysis of energy-dependent time profiles suggests that there is a pronounced temporal correlation between the time derivative of soft X-rays and 14-20 keV hard X-rays, i.e., the Neupert effect, in about half of the studied events. (5) Albeit small, many microflares exhibit hard X-ray emission at over 10 keV and microwave emission at around 10 GHz. Spectral analysis in these two wavelengths corroborates the non-thermal nature of these emissions. (6) In a limited number of samples, the RHESSI spectral fitting yields a photon spectral index of 4.5-7, and microwave spectral analysis on the same events shows that the power-law index of the electron spectrum is in the range of 2-5. The discrepancy in the electron spectrum index derived from hard X-rays and microwaves is substantially greater than previously reported in big flares, hinting at the existence of high-energy, microwave emitting electrons that have a much hardened spectrum compared with electrons emitting hard X-rays.

Authors: Jiong Qiu, Chang Liu, Dale E. Gary, Gelu, M. Nita, Haimin Wang
Projects: RHESSI

Publication Status: ApJ, 2004, 612
Last Modified: 2004-06-04 16:05
Go to main E-Print page  Co- and counter-helicity interaction between two adjacent laboratory prominences   Impulsive and Gradual Nonthermal Emissions in an X-Class Flare  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Formation and Dynamics in an Observed Preeruptive Filament
Unveiling the spectacular over 24-hour flare of star CD-36 3202
The centroid speed as a characteristic of the group speed of solar coronal fast magnetoacoustic wave trains
Coronal dimmings as indicators of early CME propagation direction
A Chromatic Treatment of Linear Polarization in the Solar Corona at the 2023 Total Solar Eclipse
MinXSS-2 CubeSat mission overview: Improvements from the successful MinXSS-1 mission
Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations
Study of Time Evolution of Thermal and Nonthermal Emission from an M-class Solar Flare
Achievements and Lessons Learned From Successful Small Satellite Missions for Space Weather-Oriented Research
Scaling of Electron Heating by Magnetization During Reconnection and Applications to Dipolarization Fronts and Super-Hot Solar Flares
Defining the Middle Corona
First Results for Solar Soft X-Ray Irradiance Measurements from the Third-generation Miniature X-Ray Solar Spectrometer
Deciphering the solar coronal heating: Energizing small-scale loops through surface convection
Using Potential Field Extrapolations to Explore the Origin of Type II Spicules
Phase mixed Alfvén waves in partially ionised solar plasmas
Terrestrial temperature, sea levels and ice area links with solar activity and solar orbital motion
A model of failed solar eruption initiated and destructed by magnetic reconnection
Energetics of a solar flare and a coronal mass ejection generated by a hot channel eruption
An Optically Thin View of the Flaring Chromosphere: Nonthermal widths in a chromospheric condensation during an X-class solar flare
A Database of Magnetic and Thermodynamic Properties of Confined And Eruptive Solar Flares

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University