E-Print Archive

There are 4507 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Signature of oscillations in coronal bright points View all abstracts by submitter

Ignacio Ugarte-Urra   Submitted: 2004-06-16 17:25

A detailed study of two consecutive bright points observed simultaneously with the Coronal Diagnostic Spectrometer (CDS), the Extreme ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO) is presented. The analysis of the evolution of the photospheric magnetic features and their coronal counterpart shows that there is a linear dependence between the EIT Fe XII 195~AA flux and the total magnetic flux of the photospheric bipolarity. The appearance of the coronal emission is associated with the emergence of new magnetic flux and the disappearance of coronal emission is associated with the cancellation of one of the polarities. In one of the cases the disappearance takes place ~3-4 hours before the full cancellation of the weakest polarity. The spectral data obtained with CDS show that one of the bright points experienced short time variations in the flux on a time scale of 420-650 seconds, correlated in the transition region lines (O V 629.73~AA and O III 599.60~AA) and also the He I 584.34 Å line. The coronal line (Mg IX 368.07~AA) undergoes changes as well, but on a longer scale. The wavelet analysis of the temporal series reveals that many of these events appear in a random fashion and sometimes after periods of quietness. However, we have found two cases of an oscillatory behaviour. A sub-section of the O V temporal series of the second bright point shows a damped oscillation of five cycles peaking in the wavelet spectrum at 546 seconds, but showing in the latter few cycles a lengthening of that period. The period compares well with that detected in the S VI 933.40 Å oscillations seen in another bright point observed with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer, which has a period of 491 seconds. The derived electron density in the transition region was 3x1010 cm-3 with some small variability, while the coronal electron density was 5x108 cm-3.

Authors: I. Ugarte-Urra, J. G. Doyle, M. S. Madjarska and E. O'Shea
Projects: None

Publication Status: Astronomy and Astrophysics, v.418, p.313-324 (2004)
Last Modified: 2004-06-16 17:25
Go to main E-Print page  CDS wide slit time-series of EUV coronal bright points  Vertical Lorentz Force and Cross-Field Currents in the Photospheric Magnetic Fields of Solar Active Regions  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University