E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A Model for Bright Knots in Solar Flare Loops View all abstracts by submitter

Spiros Patsourakos   Submitted: 2004-06-28 07:32

EUV observations often indicate the presence of bright knots in flare loops. The temperature of the knot plasma is of order 1MK, and the knots themselves are usually localized somewhere near the loop tops. We propose a model in which the formation of EUV knots is due to the spatial structure of the non-flare active region heating. We present the results of a series of 1D hydrodynamic, flare-loop simulations, which include both an impulsive flare heating and a background, active region heating. The simulations demonstrate that the formation of the observed knots depends critically on the spatial distribution of the background heating during the decay phase. In particular, the heating must be localized far from the loop apex and have a magnitude comparable with the local radiative losses of the cooling loop. Our results, therefore, provide strong constraints on both coronal heating and post-flare conditions.

Authors: S. Patsourakos, S. K. Antiochos, and J. A. Klimchuk
Projects: TRACE

Publication Status: ApJ (in press)
Last Modified: 2004-06-28 07:32
Go to main E-Print page  Broadband Measurements of Facular Photometric Contrast with the Solar Bolometric Imager  Vertical oscillations of a coronal loop observed by TRACE  Edit Entry  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University