E-Print Archive

There are 4100 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Bihelical Magnetic Relaxation and Large Scale Magnetic FIeld Growth View all abstracts by submitter

Eric Blackman   Submitted: 2004-07-07 21:19

A unified, three-scale system of equations accommodating nonlinear velocity driven helical dynamos, as well as time-dependent relaxation of magnetically dominated unihelical or bihelical systems is derived and solved herein. When opposite magnetic helicities of equal magnitude are injected on the intermediate and small scales, the large scale magnetic helicity grows kinematically (independent of the magnetic Reynolds number) to equal that on the intermediate scale. For both free and driven relaxation large scale fields are rapidly produced. Subsequently, a dissipation-limited dynamo, driven by growth of small scale kinetic helicity, further amplifies the large scale field. The results are important for astrophysical coronae fed with bihelical structures by dynamos in their host rotators. The large scale for the rotator corresponds to the intermediate scale for the corona. That bihelical magnetic relaxation can produce global scale fields may help to explain the formation of astrophysical coronal holes and magnetohydrodynamic outflows.

Authors: Eric G. Blackman (Univ. of Rochester)
Projects: None

Publication Status: submitted to Physics of Plasmas
Last Modified: 2004-07-07 21:19
Go to main E-Print page  Three species collisionless reconnection: Effect of O+ on magnetotail reconnection  Automated Recognition of Active Regions on Full Disk Solar Spectroheliograms using H α , Ca II K3 and Fe XII 195 Å wavelengths  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University