E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Bihelical Magnetic Relaxation and Large Scale Magnetic FIeld Growth View all abstracts by submitter

Eric Blackman   Submitted: 2004-07-07 21:19

A unified, three-scale system of equations accommodating nonlinear velocity driven helical dynamos, as well as time-dependent relaxation of magnetically dominated unihelical or bihelical systems is derived and solved herein. When opposite magnetic helicities of equal magnitude are injected on the intermediate and small scales, the large scale magnetic helicity grows kinematically (independent of the magnetic Reynolds number) to equal that on the intermediate scale. For both free and driven relaxation large scale fields are rapidly produced. Subsequently, a dissipation-limited dynamo, driven by growth of small scale kinetic helicity, further amplifies the large scale field. The results are important for astrophysical coronae fed with bihelical structures by dynamos in their host rotators. The large scale for the rotator corresponds to the intermediate scale for the corona. That bihelical magnetic relaxation can produce global scale fields may help to explain the formation of astrophysical coronal holes and magnetohydrodynamic outflows.

Authors: Eric G. Blackman (Univ. of Rochester)
Projects: None

Publication Status: submitted to Physics of Plasmas
Last Modified: 2004-07-07 21:19
Go to main E-Print page  Three species collisionless reconnection: Effect of O+ on magnetotail reconnection  Automated Recognition of Active Regions on Full Disk Solar Spectroheliograms using H α , Ca II K3 and Fe XII 195 Å wavelengths  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University